\(\int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 (-4000 x+64000 x^3+64000 x^4)+(8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 (-4000 x+192000 x^3+256000 x^4)) \log (x)}{x} \, dx\) [908]

   Optimal result
   Rubi [B] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 113, antiderivative size = 25 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=x-5 \left (5+80 x \left (e^2-x-x^2\right )\right )^2 \log (x) \]

[Out]

x-5*ln(x)*(5*x*(16*exp(2)-16*x-16*x^2)+5)^2

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(84\) vs. \(2(25)=50\).

Time = 0.12 (sec) , antiderivative size = 84, normalized size of antiderivative = 3.36, number of steps used = 13, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6, 14, 2403, 2332, 2341} \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=-32000 x^6 \log (x)-64000 x^5 \log (x)-32000 \left (1-2 e^2\right ) x^4 \log (x)+4000 \left (1+16 e^2\right ) x^3 \log (x)+4000 \left (1-8 e^4\right ) x^2 \log (x)+\left (1-4000 e^2\right ) x+4000 e^2 x-4000 e^2 x \log (x)-125 \log (x) \]

[In]

Int[(-125 + x + 4000*x^2 - 32000*E^4*x^2 + 4000*x^3 - 32000*x^4 - 64000*x^5 - 32000*x^6 + E^2*(-4000*x + 64000
*x^3 + 64000*x^4) + (8000*x^2 - 64000*E^4*x^2 + 12000*x^3 - 128000*x^4 - 320000*x^5 - 192000*x^6 + E^2*(-4000*
x + 192000*x^3 + 256000*x^4))*Log[x])/x,x]

[Out]

4000*E^2*x + (1 - 4000*E^2)*x - 125*Log[x] - 4000*E^2*x*Log[x] + 4000*(1 - 8*E^4)*x^2*Log[x] + 4000*(1 + 16*E^
2)*x^3*Log[x] - 32000*(1 - 2*E^2)*x^4*Log[x] - 64000*x^5*Log[x] - 32000*x^6*Log[x]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2403

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {-125+x+\left (4000-32000 e^4\right ) x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx \\ & = \int \left (\frac {-125+\left (1-4000 e^2\right ) x+4000 \left (1-8 e^4\right ) x^2+4000 \left (1+16 e^2\right ) x^3-32000 \left (1-2 e^2\right ) x^4-64000 x^5-32000 x^6}{x}-4000 \left (e^2-2 x-3 x^2\right ) \left (1+16 e^2 x-16 x^2-16 x^3\right ) \log (x)\right ) \, dx \\ & = -\left (4000 \int \left (e^2-2 x-3 x^2\right ) \left (1+16 e^2 x-16 x^2-16 x^3\right ) \log (x) \, dx\right )+\int \frac {-125+\left (1-4000 e^2\right ) x+4000 \left (1-8 e^4\right ) x^2+4000 \left (1+16 e^2\right ) x^3-32000 \left (1-2 e^2\right ) x^4-64000 x^5-32000 x^6}{x} \, dx \\ & = -\left (4000 \int \left (e^2 \log (x)+2 \left (-1+8 e^4\right ) x \log (x)-3 \left (1+16 e^2\right ) x^2 \log (x)-32 \left (-1+2 e^2\right ) x^3 \log (x)+80 x^4 \log (x)+48 x^5 \log (x)\right ) \, dx\right )+\int \left (1-4000 e^2-\frac {125}{x}+4000 \left (1-8 e^4\right ) x+4000 \left (1+16 e^2\right ) x^2-32000 \left (1-2 e^2\right ) x^3-64000 x^4-32000 x^5\right ) \, dx \\ & = \left (1-4000 e^2\right ) x+2000 \left (1-8 e^4\right ) x^2+\frac {4000}{3} \left (1+16 e^2\right ) x^3-8000 \left (1-2 e^2\right ) x^4-12800 x^5-\frac {16000 x^6}{3}-125 \log (x)-192000 \int x^5 \log (x) \, dx-320000 \int x^4 \log (x) \, dx-\left (4000 e^2\right ) \int \log (x) \, dx-\left (128000 \left (1-2 e^2\right )\right ) \int x^3 \log (x) \, dx+\left (12000 \left (1+16 e^2\right )\right ) \int x^2 \log (x) \, dx+\left (8000 \left (1-8 e^4\right )\right ) \int x \log (x) \, dx \\ & = 4000 e^2 x+\left (1-4000 e^2\right ) x-125 \log (x)-4000 e^2 x \log (x)+4000 \left (1-8 e^4\right ) x^2 \log (x)+4000 \left (1+16 e^2\right ) x^3 \log (x)-32000 \left (1-2 e^2\right ) x^4 \log (x)-64000 x^5 \log (x)-32000 x^6 \log (x) \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(79\) vs. \(2(25)=50\).

Time = 0.05 (sec) , antiderivative size = 79, normalized size of antiderivative = 3.16 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=x-125 \log (x)-4000 e^2 x \log (x)+4000 x^2 \log (x)-32000 e^4 x^2 \log (x)+4000 x^3 \log (x)+64000 e^2 x^3 \log (x)-32000 x^4 \log (x)+64000 e^2 x^4 \log (x)-64000 x^5 \log (x)-32000 x^6 \log (x) \]

[In]

Integrate[(-125 + x + 4000*x^2 - 32000*E^4*x^2 + 4000*x^3 - 32000*x^4 - 64000*x^5 - 32000*x^6 + E^2*(-4000*x +
 64000*x^3 + 64000*x^4) + (8000*x^2 - 64000*E^4*x^2 + 12000*x^3 - 128000*x^4 - 320000*x^5 - 192000*x^6 + E^2*(
-4000*x + 192000*x^3 + 256000*x^4))*Log[x])/x,x]

[Out]

x - 125*Log[x] - 4000*E^2*x*Log[x] + 4000*x^2*Log[x] - 32000*E^4*x^2*Log[x] + 4000*x^3*Log[x] + 64000*E^2*x^3*
Log[x] - 32000*x^4*Log[x] + 64000*E^2*x^4*Log[x] - 64000*x^5*Log[x] - 32000*x^6*Log[x]

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.04

method result size
risch \(-125 \left (-16 x^{3}+16 \,{\mathrm e}^{2} x -16 x^{2}+1\right )^{2} \ln \left (x \right )+x\) \(26\)
norman \(x -125 \ln \left (x \right )+\left (-32000 \,{\mathrm e}^{4}+4000\right ) x^{2} \ln \left (x \right )+\left (64000 \,{\mathrm e}^{2}-32000\right ) x^{4} \ln \left (x \right )+\left (64000 \,{\mathrm e}^{2}+4000\right ) x^{3} \ln \left (x \right )-64000 x^{5} \ln \left (x \right )-32000 x^{6} \ln \left (x \right )-4000 x \,{\mathrm e}^{2} \ln \left (x \right )\) \(66\)
parallelrisch \(-32000 x^{6} \ln \left (x \right )+64000 \,{\mathrm e}^{2} \ln \left (x \right ) x^{4}-64000 x^{5} \ln \left (x \right )-32000 x^{2} {\mathrm e}^{4} \ln \left (x \right )+64000 x^{3} {\mathrm e}^{2} \ln \left (x \right )-32000 x^{4} \ln \left (x \right )+4000 x^{3} \ln \left (x \right )-4000 x \,{\mathrm e}^{2} \ln \left (x \right )+4000 x^{2} \ln \left (x \right )-125 \ln \left (x \right )+x\) \(78\)
parts \(x -32000 x^{6} \ln \left (x \right )-4000 \,{\mathrm e}^{2} \left (x \ln \left (x \right )-x \right )-64000 x^{5} \ln \left (x \right )-16000 x^{2} {\mathrm e}^{4}+\frac {64000 x^{3} {\mathrm e}^{2}}{3}-32000 x^{4} \ln \left (x \right )+16000 x^{4} {\mathrm e}^{2}-125 \ln \left (x \right )+4000 x^{3} \ln \left (x \right )+4000 x^{2} \ln \left (x \right )-4000 \,{\mathrm e}^{2} x -64000 \,{\mathrm e}^{4} \left (\frac {x^{2} \ln \left (x \right )}{2}-\frac {x^{2}}{4}\right )+192000 \,{\mathrm e}^{2} \left (\frac {x^{3} \ln \left (x \right )}{3}-\frac {x^{3}}{9}\right )+256000 \,{\mathrm e}^{2} \left (\frac {x^{4} \ln \left (x \right )}{4}-\frac {x^{4}}{16}\right )\) \(133\)
default \(x -32000 x^{6} \ln \left (x \right )-4000 \,{\mathrm e}^{2} \left (x \ln \left (x \right )-x \right )-64000 x^{5} \ln \left (x \right )-16000 x^{2} {\mathrm e}^{4}+\frac {64000 x^{3} {\mathrm e}^{2}}{3}-32000 x^{4} \ln \left (x \right )+16000 x^{4} {\mathrm e}^{2}-125 \ln \left (x \right )+4000 x^{3} \ln \left (x \right )+4000 x^{2} \ln \left (x \right )-4000 \,{\mathrm e}^{2} x -64000 \,{\mathrm e}^{4} \left (\frac {x^{2} \ln \left (x \right )}{2}-\frac {x^{2}}{4}\right )+192000 \,{\mathrm e}^{2} \left (\frac {x^{3} \ln \left (x \right )}{3}-\frac {x^{3}}{9}\right )+256000 \,{\mathrm e}^{2} \left (\frac {x^{4} \ln \left (x \right )}{4}-\frac {x^{4}}{16}\right )\) \(135\)

[In]

int(((-64000*x^2*exp(2)^2+(256000*x^4+192000*x^3-4000*x)*exp(2)-192000*x^6-320000*x^5-128000*x^4+12000*x^3+800
0*x^2)*ln(x)-32000*x^2*exp(2)^2+(64000*x^4+64000*x^3-4000*x)*exp(2)-32000*x^6-64000*x^5-32000*x^4+4000*x^3+400
0*x^2+x-125)/x,x,method=_RETURNVERBOSE)

[Out]

-125*(-16*x^3+16*exp(2)*x-16*x^2+1)^2*ln(x)+x

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 58 vs. \(2 (22) = 44\).

Time = 0.26 (sec) , antiderivative size = 58, normalized size of antiderivative = 2.32 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=-125 \, {\left (256 \, x^{6} + 512 \, x^{5} + 256 \, x^{4} - 32 \, x^{3} + 256 \, x^{2} e^{4} - 32 \, x^{2} - 32 \, {\left (16 \, x^{4} + 16 \, x^{3} - x\right )} e^{2} + 1\right )} \log \left (x\right ) + x \]

[In]

integrate(((-64000*x^2*exp(2)^2+(256000*x^4+192000*x^3-4000*x)*exp(2)-192000*x^6-320000*x^5-128000*x^4+12000*x
^3+8000*x^2)*log(x)-32000*x^2*exp(2)^2+(64000*x^4+64000*x^3-4000*x)*exp(2)-32000*x^6-64000*x^5-32000*x^4+4000*
x^3+4000*x^2+x-125)/x,x, algorithm="fricas")

[Out]

-125*(256*x^6 + 512*x^5 + 256*x^4 - 32*x^3 + 256*x^2*e^4 - 32*x^2 - 32*(16*x^4 + 16*x^3 - x)*e^2 + 1)*log(x) +
 x

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 66 vs. \(2 (26) = 52\).

Time = 0.11 (sec) , antiderivative size = 66, normalized size of antiderivative = 2.64 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=x + \left (- 32000 x^{6} - 64000 x^{5} - 32000 x^{4} + 64000 x^{4} e^{2} + 4000 x^{3} + 64000 x^{3} e^{2} - 32000 x^{2} e^{4} + 4000 x^{2} - 4000 x e^{2}\right ) \log {\left (x \right )} - 125 \log {\left (x \right )} \]

[In]

integrate(((-64000*x**2*exp(2)**2+(256000*x**4+192000*x**3-4000*x)*exp(2)-192000*x**6-320000*x**5-128000*x**4+
12000*x**3+8000*x**2)*ln(x)-32000*x**2*exp(2)**2+(64000*x**4+64000*x**3-4000*x)*exp(2)-32000*x**6-64000*x**5-3
2000*x**4+4000*x**3+4000*x**2+x-125)/x,x)

[Out]

x + (-32000*x**6 - 64000*x**5 - 32000*x**4 + 64000*x**4*exp(2) + 4000*x**3 + 64000*x**3*exp(2) - 32000*x**2*ex
p(4) + 4000*x**2 - 4000*x*exp(2))*log(x) - 125*log(x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 130 vs. \(2 (22) = 44\).

Time = 0.19 (sec) , antiderivative size = 130, normalized size of antiderivative = 5.20 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=-32000 \, x^{6} \log \left (x\right ) - 64000 \, x^{5} \log \left (x\right ) + 16000 \, x^{4} e^{2} - 32000 \, x^{4} \log \left (x\right ) + \frac {64000}{3} \, x^{3} e^{2} + 4000 \, x^{3} \log \left (x\right ) - 16000 \, x^{2} e^{4} + 4000 \, x^{2} \log \left (x\right ) - 16000 \, {\left (2 \, x^{2} \log \left (x\right ) - x^{2}\right )} e^{4} + 16000 \, {\left (4 \, x^{4} \log \left (x\right ) - x^{4}\right )} e^{2} + \frac {64000}{3} \, {\left (3 \, x^{3} \log \left (x\right ) - x^{3}\right )} e^{2} - 4000 \, {\left (x \log \left (x\right ) - x\right )} e^{2} - 4000 \, x e^{2} + x - 125 \, \log \left (x\right ) \]

[In]

integrate(((-64000*x^2*exp(2)^2+(256000*x^4+192000*x^3-4000*x)*exp(2)-192000*x^6-320000*x^5-128000*x^4+12000*x
^3+8000*x^2)*log(x)-32000*x^2*exp(2)^2+(64000*x^4+64000*x^3-4000*x)*exp(2)-32000*x^6-64000*x^5-32000*x^4+4000*
x^3+4000*x^2+x-125)/x,x, algorithm="maxima")

[Out]

-32000*x^6*log(x) - 64000*x^5*log(x) + 16000*x^4*e^2 - 32000*x^4*log(x) + 64000/3*x^3*e^2 + 4000*x^3*log(x) -
16000*x^2*e^4 + 4000*x^2*log(x) - 16000*(2*x^2*log(x) - x^2)*e^4 + 16000*(4*x^4*log(x) - x^4)*e^2 + 64000/3*(3
*x^3*log(x) - x^3)*e^2 - 4000*(x*log(x) - x)*e^2 - 4000*x*e^2 + x - 125*log(x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 75 vs. \(2 (22) = 44\).

Time = 0.28 (sec) , antiderivative size = 75, normalized size of antiderivative = 3.00 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=-32000 \, x^{6} \log \left (x\right ) - 64000 \, x^{5} \log \left (x\right ) + 64000 \, x^{4} e^{2} \log \left (x\right ) - 32000 \, x^{4} \log \left (x\right ) + 64000 \, x^{3} e^{2} \log \left (x\right ) + 4000 \, x^{3} \log \left (x\right ) - 32000 \, x^{2} e^{4} \log \left (x\right ) + 4000 \, x^{2} \log \left (x\right ) - 4000 \, x e^{2} \log \left (x\right ) + x - 125 \, \log \left (x\right ) \]

[In]

integrate(((-64000*x^2*exp(2)^2+(256000*x^4+192000*x^3-4000*x)*exp(2)-192000*x^6-320000*x^5-128000*x^4+12000*x
^3+8000*x^2)*log(x)-32000*x^2*exp(2)^2+(64000*x^4+64000*x^3-4000*x)*exp(2)-32000*x^6-64000*x^5-32000*x^4+4000*
x^3+4000*x^2+x-125)/x,x, algorithm="giac")

[Out]

-32000*x^6*log(x) - 64000*x^5*log(x) + 64000*x^4*e^2*log(x) - 32000*x^4*log(x) + 64000*x^3*e^2*log(x) + 4000*x
^3*log(x) - 32000*x^2*e^4*log(x) + 4000*x^2*log(x) - 4000*x*e^2*log(x) + x - 125*log(x)

Mupad [B] (verification not implemented)

Time = 8.62 (sec) , antiderivative size = 67, normalized size of antiderivative = 2.68 \[ \int \frac {-125+x+4000 x^2-32000 e^4 x^2+4000 x^3-32000 x^4-64000 x^5-32000 x^6+e^2 \left (-4000 x+64000 x^3+64000 x^4\right )+\left (8000 x^2-64000 e^4 x^2+12000 x^3-128000 x^4-320000 x^5-192000 x^6+e^2 \left (-4000 x+192000 x^3+256000 x^4\right )\right ) \log (x)}{x} \, dx=x^3\,\ln \left (x\right )\,\left (64000\,{\mathrm {e}}^2+4000\right )-64000\,x^5\,\ln \left (x\right )-32000\,x^6\,\ln \left (x\right )-x\,\left (4000\,{\mathrm {e}}^2\,\ln \left (x\right )-1\right )-x^2\,\ln \left (x\right )\,\left (32000\,{\mathrm {e}}^4-4000\right )-125\,\ln \left (x\right )+x^4\,\ln \left (x\right )\,\left (64000\,{\mathrm {e}}^2-32000\right ) \]

[In]

int(-(32000*x^2*exp(4) - exp(2)*(64000*x^3 - 4000*x + 64000*x^4) - x + log(x)*(64000*x^2*exp(4) - exp(2)*(1920
00*x^3 - 4000*x + 256000*x^4) - 8000*x^2 - 12000*x^3 + 128000*x^4 + 320000*x^5 + 192000*x^6) - 4000*x^2 - 4000
*x^3 + 32000*x^4 + 64000*x^5 + 32000*x^6 + 125)/x,x)

[Out]

x^3*log(x)*(64000*exp(2) + 4000) - 64000*x^5*log(x) - 32000*x^6*log(x) - x*(4000*exp(2)*log(x) - 1) - x^2*log(
x)*(32000*exp(4) - 4000) - 125*log(x) + x^4*log(x)*(64000*exp(2) - 32000)