\(\int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log (\frac {\log (2)}{4})}{4 x^3} \, dx\) [10158]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [C] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 20 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{x^2} \]

[Out]

(16+ln(1/4*ln(2)))/x^2*exp(1/4*x)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 14, 2208, 2209} \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{x^2} \]

[In]

Int[(E^(x/4)*(-128 + 16*x) + E^(x/4)*(-8 + x)*Log[Log[2]/4])/(4*x^3),x]

[Out]

(E^(x/4)*(16 + Log[Log[2]/4]))/x^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2208

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*((b*F^(g*(e + f*x)))^n/(d*(m + 1))), x] - Dist[f*g*n*(Log[F]/(d*(m + 1))), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !TrueQ[$UseGamm
a]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{4} \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{x^3} \, dx \\ & = \frac {1}{4} \int \left (-\frac {128 e^{x/4} \left (1+\frac {1}{16} \log \left (\frac {\log (2)}{4}\right )\right )}{x^3}+\frac {16 e^{x/4} \left (1+\frac {1}{16} \log \left (\frac {\log (2)}{4}\right )\right )}{x^2}\right ) \, dx \\ & = \frac {1}{4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right ) \int \frac {e^{x/4}}{x^2} \, dx-\left (2 \left (16+\log \left (\frac {\log (2)}{4}\right )\right )\right ) \int \frac {e^{x/4}}{x^3} \, dx \\ & = \frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{x^2}-\frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{4 x}+\frac {1}{16} \left (16+\log \left (\frac {\log (2)}{4}\right )\right ) \int \frac {e^{x/4}}{x} \, dx-\frac {1}{4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right ) \int \frac {e^{x/4}}{x^2} \, dx \\ & = \frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{x^2}+\frac {1}{16} \operatorname {ExpIntegralEi}\left (\frac {x}{4}\right ) \left (16+\log \left (\frac {\log (2)}{4}\right )\right )-\frac {1}{16} \left (16+\log \left (\frac {\log (2)}{4}\right )\right ) \int \frac {e^{x/4}}{x} \, dx \\ & = \frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {e^{x/4} \left (16+\log \left (\frac {\log (2)}{4}\right )\right )}{x^2} \]

[In]

Integrate[(E^(x/4)*(-128 + 16*x) + E^(x/4)*(-8 + x)*Log[Log[2]/4])/(4*x^3),x]

[Out]

(E^(x/4)*(16 + Log[Log[2]/4]))/x^2

Maple [A] (verified)

Time = 1.02 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80

method result size
gosper \(\frac {\left (16+\ln \left (\frac {\ln \left (2\right )}{4}\right )\right ) {\mathrm e}^{\frac {x}{4}}}{x^{2}}\) \(16\)
norman \(\frac {\left (-2 \ln \left (2\right )+\ln \left (\ln \left (2\right )\right )+16\right ) {\mathrm e}^{\frac {x}{4}}}{x^{2}}\) \(18\)
risch \(-\frac {\left (2 \ln \left (2\right )-\ln \left (\ln \left (2\right )\right )-16\right ) {\mathrm e}^{\frac {x}{4}}}{x^{2}}\) \(21\)
parallelrisch \(\frac {4 \,{\mathrm e}^{\frac {x}{4}} \ln \left (\frac {\ln \left (2\right )}{4}\right )+64 \,{\mathrm e}^{\frac {x}{4}}}{4 x^{2}}\) \(24\)
derivativedivides \(\frac {16 \,{\mathrm e}^{\frac {x}{4}}}{x^{2}}+\frac {\ln \left (2\right ) \left (-\frac {8 \,{\mathrm e}^{\frac {x}{4}}}{x^{2}}-\frac {2 \,{\mathrm e}^{\frac {x}{4}}}{x}-\frac {\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{2}\right )}{4}-\frac {\ln \left (\ln \left (2\right )\right ) \left (-\frac {8 \,{\mathrm e}^{\frac {x}{4}}}{x^{2}}-\frac {2 \,{\mathrm e}^{\frac {x}{4}}}{x}-\frac {\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{2}\right )}{8}-\frac {\ln \left (2\right ) \left (-\frac {4 \,{\mathrm e}^{\frac {x}{4}}}{x}-\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )\right )}{8}+\frac {\ln \left (\ln \left (2\right )\right ) \left (-\frac {4 \,{\mathrm e}^{\frac {x}{4}}}{x}-\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )\right )}{16}\) \(115\)
default \(\frac {16 \,{\mathrm e}^{\frac {x}{4}}}{x^{2}}+\frac {\ln \left (2\right ) \left (-\frac {8 \,{\mathrm e}^{\frac {x}{4}}}{x^{2}}-\frac {2 \,{\mathrm e}^{\frac {x}{4}}}{x}-\frac {\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{2}\right )}{4}-\frac {\ln \left (\ln \left (2\right )\right ) \left (-\frac {8 \,{\mathrm e}^{\frac {x}{4}}}{x^{2}}-\frac {2 \,{\mathrm e}^{\frac {x}{4}}}{x}-\frac {\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{2}\right )}{8}-\frac {\ln \left (2\right ) \left (-\frac {4 \,{\mathrm e}^{\frac {x}{4}}}{x}-\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )\right )}{8}+\frac {\ln \left (\ln \left (2\right )\right ) \left (-\frac {4 \,{\mathrm e}^{\frac {x}{4}}}{x}-\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )\right )}{16}\) \(115\)
meijerg \(-4 \left (\frac {1}{4}+\frac {\ln \left (\frac {\ln \left (2\right )}{4}\right )}{64}\right ) \left (\frac {4}{x}+1-\ln \left (x \right )+2 \ln \left (2\right )-i \pi -\frac {2 \left (2+\frac {x}{2}\right )}{x}+\frac {4 \,{\mathrm e}^{\frac {x}{4}}}{x}+\ln \left (-\frac {x}{4}\right )+\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )\right )-4 \left (\frac {\ln \left (\frac {\ln \left (2\right )}{4}\right )}{32}+\frac {1}{2}\right ) \left (-\frac {8}{x^{2}}-\frac {4}{x}-\frac {3}{4}+\frac {\ln \left (x \right )}{2}-\ln \left (2\right )+\frac {i \pi }{2}+\frac {\frac {3}{4} x^{2}+4 x +8}{x^{2}}-\frac {8 \left (3+\frac {3 x}{4}\right ) {\mathrm e}^{\frac {x}{4}}}{3 x^{2}}-\frac {\ln \left (-\frac {x}{4}\right )}{2}-\frac {\operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{2}\right )\) \(137\)

[In]

int(1/4*((-8+x)*exp(1/4*x)*ln(1/4*ln(2))+(16*x-128)*exp(1/4*x))/x^3,x,method=_RETURNVERBOSE)

[Out]

(16+ln(1/4*ln(2)))/x^2*exp(1/4*x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.05 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {e^{\left (\frac {1}{4} \, x\right )} \log \left (\frac {1}{4} \, \log \left (2\right )\right ) + 16 \, e^{\left (\frac {1}{4} \, x\right )}}{x^{2}} \]

[In]

integrate(1/4*((-8+x)*exp(1/4*x)*log(1/4*log(2))+(16*x-128)*exp(1/4*x))/x^3,x, algorithm="fricas")

[Out]

(e^(1/4*x)*log(1/4*log(2)) + 16*e^(1/4*x))/x^2

Sympy [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.95 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {\left (- 2 \log {\left (2 \right )} + \log {\left (\log {\left (2 \right )} \right )} + 16\right ) e^{\frac {x}{4}}}{x^{2}} \]

[In]

integrate(1/4*((-8+x)*exp(1/4*x)*ln(1/4*ln(2))+(16*x-128)*exp(1/4*x))/x**3,x)

[Out]

(-2*log(2) + log(log(2)) + 16)*exp(x/4)/x**2

Maxima [C] (verification not implemented)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.25 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.85 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {1}{16} \, \Gamma \left (-1, -\frac {1}{4} \, x\right ) \log \left (\frac {1}{4} \, \log \left (2\right )\right ) + \frac {1}{8} \, \Gamma \left (-2, -\frac {1}{4} \, x\right ) \log \left (\frac {1}{4} \, \log \left (2\right )\right ) + \Gamma \left (-1, -\frac {1}{4} \, x\right ) + 2 \, \Gamma \left (-2, -\frac {1}{4} \, x\right ) \]

[In]

integrate(1/4*((-8+x)*exp(1/4*x)*log(1/4*log(2))+(16*x-128)*exp(1/4*x))/x^3,x, algorithm="maxima")

[Out]

1/16*gamma(-1, -1/4*x)*log(1/4*log(2)) + 1/8*gamma(-2, -1/4*x)*log(1/4*log(2)) + gamma(-1, -1/4*x) + 2*gamma(-
2, -1/4*x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.45 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=-\frac {2 \, e^{\left (\frac {1}{4} \, x\right )} \log \left (2\right ) - e^{\left (\frac {1}{4} \, x\right )} \log \left (\log \left (2\right )\right ) - 16 \, e^{\left (\frac {1}{4} \, x\right )}}{x^{2}} \]

[In]

integrate(1/4*((-8+x)*exp(1/4*x)*log(1/4*log(2))+(16*x-128)*exp(1/4*x))/x^3,x, algorithm="giac")

[Out]

-(2*e^(1/4*x)*log(2) - e^(1/4*x)*log(log(2)) - 16*e^(1/4*x))/x^2

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.75 \[ \int \frac {e^{x/4} (-128+16 x)+e^{x/4} (-8+x) \log \left (\frac {\log (2)}{4}\right )}{4 x^3} \, dx=\frac {{\mathrm {e}}^{x/4}\,\left (\ln \left (\frac {\ln \left (2\right )}{4}\right )+16\right )}{x^2} \]

[In]

int(((exp(x/4)*(16*x - 128))/4 + (log(log(2)/4)*exp(x/4)*(x - 8))/4)/x^3,x)

[Out]

(exp(x/4)*(log(log(2)/4) + 16))/x^2