\(\int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x (18+24 x+8 x^2)}{18+24 x+8 x^2} \, dx\) [950]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 47, antiderivative size = 28 \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=4+e^x+x-\frac {1}{4} (4-2 x) x^2-\frac {x}{3+2 x} \]

[Out]

4-x/(3+2*x)+exp(x)+x-1/4*x^2*(4-2*x)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {27, 12, 6874, 2225, 45} \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=\frac {x^3}{2}-x^2+x+e^x+\frac {3}{2 (2 x+3)} \]

[In]

Int[(12 - 12*x - 13*x^2 + 20*x^3 + 12*x^4 + E^x*(18 + 24*x + 8*x^2))/(18 + 24*x + 8*x^2),x]

[Out]

E^x + x - x^2 + x^3/2 + 3/(2*(3 + 2*x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{2 (3+2 x)^2} \, dx \\ & = \frac {1}{2} \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{(3+2 x)^2} \, dx \\ & = \frac {1}{2} \int \left (2 e^x+\frac {12}{(3+2 x)^2}-\frac {12 x}{(3+2 x)^2}-\frac {13 x^2}{(3+2 x)^2}+\frac {20 x^3}{(3+2 x)^2}+\frac {12 x^4}{(3+2 x)^2}\right ) \, dx \\ & = -\frac {3}{3+2 x}-6 \int \frac {x}{(3+2 x)^2} \, dx+6 \int \frac {x^4}{(3+2 x)^2} \, dx-\frac {13}{2} \int \frac {x^2}{(3+2 x)^2} \, dx+10 \int \frac {x^3}{(3+2 x)^2} \, dx+\int e^x \, dx \\ & = e^x-\frac {3}{3+2 x}+6 \int \left (\frac {27}{16}-\frac {3 x}{4}+\frac {x^2}{4}+\frac {81}{16 (3+2 x)^2}-\frac {27}{4 (3+2 x)}\right ) \, dx-6 \int \left (-\frac {3}{2 (3+2 x)^2}+\frac {1}{2 (3+2 x)}\right ) \, dx-\frac {13}{2} \int \left (\frac {1}{4}+\frac {9}{4 (3+2 x)^2}-\frac {3}{2 (3+2 x)}\right ) \, dx+10 \int \left (-\frac {3}{4}+\frac {x}{4}-\frac {27}{8 (3+2 x)^2}+\frac {27}{8 (3+2 x)}\right ) \, dx \\ & = e^x+x-x^2+\frac {x^3}{2}+\frac {3}{2 (3+2 x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.36 \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=\frac {1}{2} \left (2 e^x+\frac {285+222 x-16 x^2-8 x^3+16 x^4}{24+16 x}\right ) \]

[In]

Integrate[(12 - 12*x - 13*x^2 + 20*x^3 + 12*x^4 + E^x*(18 + 24*x + 8*x^2))/(18 + 24*x + 8*x^2),x]

[Out]

(2*E^x + (285 + 222*x - 16*x^2 - 8*x^3 + 16*x^4)/(24 + 16*x))/2

Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.79

method result size
risch \(\frac {x^{3}}{2}-x^{2}+x +\frac {3}{4 \left (x +\frac {3}{2}\right )}+{\mathrm e}^{x}\) \(22\)
default \(\frac {3}{2 \left (3+2 x \right )}+x -x^{2}+\frac {x^{3}}{2}+{\mathrm e}^{x}\) \(24\)
parts \(\frac {3}{2 \left (3+2 x \right )}+x -x^{2}+\frac {x^{3}}{2}+{\mathrm e}^{x}\) \(24\)
norman \(\frac {x^{4}-x^{2}-\frac {x^{3}}{2}+2 \,{\mathrm e}^{x} x +3 \,{\mathrm e}^{x}-3}{3+2 x}\) \(33\)
parallelrisch \(\frac {4 x^{4}-2 x^{3}-4 x^{2}+8 \,{\mathrm e}^{x} x -12+12 \,{\mathrm e}^{x}}{8 x +12}\) \(36\)

[In]

int(((8*x^2+24*x+18)*exp(x)+12*x^4+20*x^3-13*x^2-12*x+12)/(8*x^2+24*x+18),x,method=_RETURNVERBOSE)

[Out]

1/2*x^3-x^2+x+3/4/(x+3/2)+exp(x)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.36 \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=\frac {2 \, x^{4} - x^{3} - 2 \, x^{2} + 2 \, {\left (2 \, x + 3\right )} e^{x} + 6 \, x + 3}{2 \, {\left (2 \, x + 3\right )}} \]

[In]

integrate(((8*x^2+24*x+18)*exp(x)+12*x^4+20*x^3-13*x^2-12*x+12)/(8*x^2+24*x+18),x, algorithm="fricas")

[Out]

1/2*(2*x^4 - x^3 - 2*x^2 + 2*(2*x + 3)*e^x + 6*x + 3)/(2*x + 3)

Sympy [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=\frac {x^{3}}{2} - x^{2} + x + e^{x} + \frac {3}{4 x + 6} \]

[In]

integrate(((8*x**2+24*x+18)*exp(x)+12*x**4+20*x**3-13*x**2-12*x+12)/(8*x**2+24*x+18),x)

[Out]

x**3/2 - x**2 + x + exp(x) + 3/(4*x + 6)

Maxima [F]

\[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=\int { \frac {12 \, x^{4} + 20 \, x^{3} - 13 \, x^{2} + 2 \, {\left (4 \, x^{2} + 12 \, x + 9\right )} e^{x} - 12 \, x + 12}{2 \, {\left (4 \, x^{2} + 12 \, x + 9\right )}} \,d x } \]

[In]

integrate(((8*x^2+24*x+18)*exp(x)+12*x^4+20*x^3-13*x^2-12*x+12)/(8*x^2+24*x+18),x, algorithm="maxima")

[Out]

1/2*x^3 - x^2 + x + 4*(x^2 + 3*x)*e^x/(4*x^2 + 12*x + 9) - 9/2*e^(-3/2)*exp_integral_e(2, -x - 3/2)/(2*x + 3)
+ 3/2/(2*x + 3) - 36*integrate(e^x/(8*x^3 + 36*x^2 + 54*x + 27), x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.36 \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=\frac {2 \, x^{4} - x^{3} - 2 \, x^{2} + 4 \, x e^{x} + 6 \, x + 6 \, e^{x} + 3}{2 \, {\left (2 \, x + 3\right )}} \]

[In]

integrate(((8*x^2+24*x+18)*exp(x)+12*x^4+20*x^3-13*x^2-12*x+12)/(8*x^2+24*x+18),x, algorithm="giac")

[Out]

1/2*(2*x^4 - x^3 - 2*x^2 + 4*x*e^x + 6*x + 6*e^x + 3)/(2*x + 3)

Mupad [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.82 \[ \int \frac {12-12 x-13 x^2+20 x^3+12 x^4+e^x \left (18+24 x+8 x^2\right )}{18+24 x+8 x^2} \, dx=x+{\mathrm {e}}^x+\frac {3}{4\,x+6}-x^2+\frac {x^3}{2} \]

[In]

int((exp(x)*(24*x + 8*x^2 + 18) - 12*x - 13*x^2 + 20*x^3 + 12*x^4 + 12)/(24*x + 8*x^2 + 18),x)

[Out]

x + exp(x) + 3/(4*x + 6) - x^2 + x^3/2