\(\int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14})}{2187 x^{13}} \, dx\) [1122]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 66, antiderivative size = 18 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{e^x+x+\left (\frac {7}{81 x^6}+x\right )^2} \]

[Out]

exp(exp(x)+(x+7/81/x^6)^2+x)

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.89, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {12, 6838} \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{\frac {6561 x^{14}+6561 x^{13}+6561 e^x x^{12}+1134 x^7+49}{6561 x^{12}}} \]

[In]

Int[(E^((49 + 1134*x^7 + 6561*E^x*x^12 + 6561*x^13 + 6561*x^14)/(6561*x^12))*(-196 - 1890*x^7 + 2187*x^13 + 21
87*E^x*x^13 + 4374*x^14))/(2187*x^13),x]

[Out]

E^((49 + 1134*x^7 + 6561*E^x*x^12 + 6561*x^13 + 6561*x^14)/(6561*x^12))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6838

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q*(F^v/Log[F]), x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{x^{13}} \, dx}{2187} \\ & = e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.33 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{e^x+\frac {49}{6561 x^{12}}+\frac {14}{81 x^5}+x+x^2} \]

[In]

Integrate[(E^((49 + 1134*x^7 + 6561*E^x*x^12 + 6561*x^13 + 6561*x^14)/(6561*x^12))*(-196 - 1890*x^7 + 2187*x^1
3 + 2187*E^x*x^13 + 4374*x^14))/(2187*x^13),x]

[Out]

E^(E^x + 49/(6561*x^12) + 14/(81*x^5) + x + x^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(30\) vs. \(2(14)=28\).

Time = 3.80 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.72

method result size
derivativedivides \({\mathrm e}^{\frac {6561 x^{12} {\mathrm e}^{x}+6561 x^{14}+6561 x^{13}+1134 x^{7}+49}{6561 x^{12}}}\) \(31\)
default \({\mathrm e}^{\frac {6561 x^{12} {\mathrm e}^{x}+6561 x^{14}+6561 x^{13}+1134 x^{7}+49}{6561 x^{12}}}\) \(31\)
risch \({\mathrm e}^{\frac {6561 x^{12} {\mathrm e}^{x}+6561 x^{14}+6561 x^{13}+1134 x^{7}+49}{6561 x^{12}}}\) \(31\)
parallelrisch \({\mathrm e}^{\frac {6561 x^{12} {\mathrm e}^{x}+6561 x^{14}+6561 x^{13}+1134 x^{7}+49}{6561 x^{12}}}\) \(31\)

[In]

int(1/2187*(2187*x^13*exp(x)+4374*x^14+2187*x^13-1890*x^7-196)*exp(1/6561*(6561*x^12*exp(x)+6561*x^14+6561*x^1
3+1134*x^7+49)/x^12)/x^13,x,method=_RETURNVERBOSE)

[Out]

exp(1/6561*(6561*x^12*exp(x)+6561*x^14+6561*x^13+1134*x^7+49)/x^12)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.67 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{\left (\frac {6561 \, x^{14} + 6561 \, x^{13} + 6561 \, x^{12} e^{x} + 1134 \, x^{7} + 49}{6561 \, x^{12}}\right )} \]

[In]

integrate(1/2187*(2187*x^13*exp(x)+4374*x^14+2187*x^13-1890*x^7-196)*exp(1/6561*(6561*x^12*exp(x)+6561*x^14+65
61*x^13+1134*x^7+49)/x^12)/x^13,x, algorithm="fricas")

[Out]

e^(1/6561*(6561*x^14 + 6561*x^13 + 6561*x^12*e^x + 1134*x^7 + 49)/x^12)

Sympy [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.50 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{\frac {x^{14} + x^{13} + x^{12} e^{x} + \frac {14 x^{7}}{81} + \frac {49}{6561}}{x^{12}}} \]

[In]

integrate(1/2187*(2187*x**13*exp(x)+4374*x**14+2187*x**13-1890*x**7-196)*exp(1/6561*(6561*x**12*exp(x)+6561*x*
*14+6561*x**13+1134*x**7+49)/x**12)/x**13,x)

[Out]

exp((x**14 + x**13 + x**12*exp(x) + 14*x**7/81 + 49/6561)/x**12)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{\left (x^{2} + x + \frac {14}{81 \, x^{5}} + \frac {49}{6561 \, x^{12}} + e^{x}\right )} \]

[In]

integrate(1/2187*(2187*x^13*exp(x)+4374*x^14+2187*x^13-1890*x^7-196)*exp(1/6561*(6561*x^12*exp(x)+6561*x^14+65
61*x^13+1134*x^7+49)/x^12)/x^13,x, algorithm="maxima")

[Out]

e^(x^2 + x + 14/81/x^5 + 49/6561/x^12 + e^x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx=e^{\left (x^{2} + x + \frac {14}{81 \, x^{5}} + \frac {49}{6561 \, x^{12}} + e^{x}\right )} \]

[In]

integrate(1/2187*(2187*x^13*exp(x)+4374*x^14+2187*x^13-1890*x^7-196)*exp(1/6561*(6561*x^12*exp(x)+6561*x^14+65
61*x^13+1134*x^7+49)/x^12)/x^13,x, algorithm="giac")

[Out]

e^(x^2 + x + 14/81/x^5 + 49/6561/x^12 + e^x)

Mupad [B] (verification not implemented)

Time = 9.29 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.22 \[ \int \frac {e^{\frac {49+1134 x^7+6561 e^x x^{12}+6561 x^{13}+6561 x^{14}}{6561 x^{12}}} \left (-196-1890 x^7+2187 x^{13}+2187 e^x x^{13}+4374 x^{14}\right )}{2187 x^{13}} \, dx={\mathrm {e}}^{x^2}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{\frac {14}{81\,x^5}}\,{\mathrm {e}}^{\frac {49}{6561\,x^{12}}}\,{\mathrm {e}}^x \]

[In]

int((exp((x^12*exp(x) + (14*x^7)/81 + x^13 + x^14 + 49/6561)/x^12)*(2187*x^13*exp(x) - 1890*x^7 + 2187*x^13 +
4374*x^14 - 196))/(2187*x^13),x)

[Out]

exp(x^2)*exp(exp(x))*exp(14/(81*x^5))*exp(49/(6561*x^12))*exp(x)