\(\int \frac {x (-3 x^2+48 x^3-144 x^4+(-1+144 x^2) \log (2))}{e^2 (-x^2-\log (2)) (36 x^5+36 x^3 \log (2))} \, dx\) [1200]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 58, antiderivative size = 31 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=\frac {\left (4-\frac {1}{3 x}\right )^2}{4 e^2 \left (-x-\frac {\log (2)}{x}\right )} \]

[Out]

1/2*(4-1/3/x)*(2-1/6/x)/exp(ln(-ln(2)/x-x)+2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.52, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 1598, 21, 1819, 30} \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=\frac {x (1-144 \log (2))+24 \log (2)}{36 e^2 \log (2) \left (x^2+\log (2)\right )}-\frac {1}{36 e^2 x \log (2)} \]

[In]

Int[(x*(-3*x^2 + 48*x^3 - 144*x^4 + (-1 + 144*x^2)*Log[2]))/(E^2*(-x^2 - Log[2])*(36*x^5 + 36*x^3*Log[2])),x]

[Out]

-1/36*1/(E^2*x*Log[2]) + (x*(1 - 144*Log[2]) + 24*Log[2])/(36*E^2*Log[2]*(x^2 + Log[2]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 1598

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1819

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{\left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx}{e^2} \\ & = \frac {\int \frac {-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)}{x^2 \left (-x^2-\log (2)\right ) \left (36 x^2+36 \log (2)\right )} \, dx}{e^2} \\ & = -\frac {\int \frac {-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)}{x^2 \left (-x^2-\log (2)\right )^2} \, dx}{36 e^2} \\ & = \frac {x (1-144 \log (2))+24 \log (2)}{36 e^2 \log (2) \left (x^2+\log (2)\right )}-\frac {\int \frac {2 x^2+\log (4)}{x^2 \left (-x^2-\log (2)\right )} \, dx}{72 e^2 \log (2)} \\ & = \frac {x (1-144 \log (2))+24 \log (2)}{36 e^2 \log (2) \left (x^2+\log (2)\right )}+\frac {\int \frac {1}{x^2} \, dx}{36 e^2 \log (2)} \\ & = -\frac {1}{36 e^2 x \log (2)}+\frac {x (1-144 \log (2))+24 \log (2)}{36 e^2 \log (2) \left (x^2+\log (2)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=-\frac {(1-12 x)^2}{36 e^2 x \left (x^2+\log (2)\right )} \]

[In]

Integrate[(x*(-3*x^2 + 48*x^3 - 144*x^4 + (-1 + 144*x^2)*Log[2]))/(E^2*(-x^2 - Log[2])*(36*x^5 + 36*x^3*Log[2]
)),x]

[Out]

-1/36*(1 - 12*x)^2/(E^2*x*(x^2 + Log[2]))

Maple [A] (verified)

Time = 0.97 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81

method result size
risch \(\frac {{\mathrm e}^{-2} \left (-4 x^{2}+\frac {2}{3} x -\frac {1}{36}\right )}{x \left (\ln \left (2\right )+x^{2}\right )}\) \(25\)
gosper \(-\frac {\left (12 x -1\right )^{2} {\mathrm e}^{-2}}{36 x \left (\ln \left (2\right )+x^{2}\right )}\) \(30\)
norman \(\frac {\frac {2 x^{2} {\mathrm e}^{-2}}{3}-\frac {x \,{\mathrm e}^{-2}}{36}-4 \,{\mathrm e}^{-2} x^{3}}{x^{2} \left (\ln \left (2\right )+x^{2}\right )}\) \(39\)
default \(\frac {{\mathrm e}^{-2} \left (-\frac {\left (144 \ln \left (2\right )-1\right ) x -24 \ln \left (2\right )}{\ln \left (2\right ) \left (\ln \left (2\right )+x^{2}\right )}-\frac {1}{x \ln \left (2\right )}\right )}{36}\) \(42\)
parallelrisch \(-\frac {\left (-24 x \ln \left (2\right )^{2}+288 x^{4} \ln \left (2\right )+144 x^{2} \ln \left (2\right )^{2}+2 x^{2} \ln \left (2\right )-48 x^{3} \ln \left (2\right )+\ln \left (2\right )^{2}+x^{4}+144 x^{6}-24 x^{5}\right ) {\mathrm e}^{-2}}{36 x \left (\ln \left (2\right )+x^{2}\right )^{3}}\) \(86\)

[In]

int(((144*x^2-1)*ln(2)-144*x^4+48*x^3-3*x^2)/(36*x^3*ln(2)+36*x^5)/exp(ln((-ln(2)-x^2)/x)+2),x,method=_RETURNV
ERBOSE)

[Out]

exp(-2)*(-4*x^2+2/3*x-1/36)/x/(ln(2)+x^2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.87 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=-\frac {144 \, x^{2} - 24 \, x + 1}{36 \, {\left (x^{3} e^{2} + x e^{2} \log \left (2\right )\right )}} \]

[In]

integrate(((144*x^2-1)*log(2)-144*x^4+48*x^3-3*x^2)/(36*x^3*log(2)+36*x^5)/exp(log((-log(2)-x^2)/x)+2),x, algo
rithm="fricas")

[Out]

-1/36*(144*x^2 - 24*x + 1)/(x^3*e^2 + x*e^2*log(2))

Sympy [A] (verification not implemented)

Time = 0.53 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.87 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=\frac {- 144 x^{2} + 24 x - 1}{36 x^{3} e^{2} + 36 x e^{2} \log {\left (2 \right )}} \]

[In]

integrate(((144*x**2-1)*ln(2)-144*x**4+48*x**3-3*x**2)/(36*x**3*ln(2)+36*x**5)/exp(ln((-ln(2)-x**2)/x)+2),x)

[Out]

(-144*x**2 + 24*x - 1)/(36*x**3*exp(2) + 36*x*exp(2)*log(2))

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.77 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=-\frac {{\left (144 \, x^{2} - 24 \, x + 1\right )} e^{\left (-2\right )}}{36 \, {\left (x^{3} + x \log \left (2\right )\right )}} \]

[In]

integrate(((144*x^2-1)*log(2)-144*x^4+48*x^3-3*x^2)/(36*x^3*log(2)+36*x^5)/exp(log((-log(2)-x^2)/x)+2),x, algo
rithm="maxima")

[Out]

-1/36*(144*x^2 - 24*x + 1)*e^(-2)/(x^3 + x*log(2))

Giac [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.77 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=-\frac {{\left (144 \, x^{2} - 24 \, x + 1\right )} e^{\left (-2\right )}}{36 \, {\left (x^{3} + x \log \left (2\right )\right )}} \]

[In]

integrate(((144*x^2-1)*log(2)-144*x^4+48*x^3-3*x^2)/(36*x^3*log(2)+36*x^5)/exp(log((-log(2)-x^2)/x)+2),x, algo
rithm="giac")

[Out]

-1/36*(144*x^2 - 24*x + 1)*e^(-2)/(x^3 + x*log(2))

Mupad [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.10 \[ \int \frac {x \left (-3 x^2+48 x^3-144 x^4+\left (-1+144 x^2\right ) \log (2)\right )}{e^2 \left (-x^2-\log (2)\right ) \left (36 x^5+36 x^3 \log (2)\right )} \, dx=-\frac {{\mathrm {e}}^{-2}\,\left (24\,x^3+144\,\ln \left (2\right )\,x^2+\ln \left (2\right )\right )}{36\,x\,\ln \left (2\right )\,\left (x^2+\ln \left (2\right )\right )} \]

[In]

int((exp(- log(-(log(2) + x^2)/x) - 2)*(log(2)*(144*x^2 - 1) - 3*x^2 + 48*x^3 - 144*x^4))/(36*x^3*log(2) + 36*
x^5),x)

[Out]

-(exp(-2)*(log(2) + 144*x^2*log(2) + 24*x^3))/(36*x*log(2)*(log(2) + x^2))