\(\int e^x (-30 x-3 x^2+4 x^3) \, dx\) [1447]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 12 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx=e^x x^2 (-15+4 x) \]

[Out]

x^2*(4*x-15)*exp(x)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 17, normalized size of antiderivative = 1.42, number of steps used = 12, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1608, 2227, 2207, 2225} \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx=4 e^x x^3-15 e^x x^2 \]

[In]

Int[E^x*(-30*x - 3*x^2 + 4*x^3),x]

[Out]

-15*E^x*x^2 + 4*E^x*x^3

Rule 1608

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2227

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !TrueQ[$UseGamma]

Rubi steps \begin{align*} \text {integral}& = \int e^x x \left (-30-3 x+4 x^2\right ) \, dx \\ & = \int \left (-30 e^x x-3 e^x x^2+4 e^x x^3\right ) \, dx \\ & = -\left (3 \int e^x x^2 \, dx\right )+4 \int e^x x^3 \, dx-30 \int e^x x \, dx \\ & = -30 e^x x-3 e^x x^2+4 e^x x^3+6 \int e^x x \, dx-12 \int e^x x^2 \, dx+30 \int e^x \, dx \\ & = 30 e^x-24 e^x x-15 e^x x^2+4 e^x x^3-6 \int e^x \, dx+24 \int e^x x \, dx \\ & = 24 e^x-15 e^x x^2+4 e^x x^3-24 \int e^x \, dx \\ & = -15 e^x x^2+4 e^x x^3 \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 12, normalized size of antiderivative = 1.00 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx=e^x x^2 (-15+4 x) \]

[In]

Integrate[E^x*(-30*x - 3*x^2 + 4*x^3),x]

[Out]

E^x*x^2*(-15 + 4*x)

Maple [A] (verified)

Time = 0.02 (sec) , antiderivative size = 12, normalized size of antiderivative = 1.00

method result size
gosper \(x^{2} \left (4 x -15\right ) {\mathrm e}^{x}\) \(12\)
risch \(\left (4 x^{3}-15 x^{2}\right ) {\mathrm e}^{x}\) \(15\)
default \(-15 \,{\mathrm e}^{x} x^{2}+4 \,{\mathrm e}^{x} x^{3}\) \(16\)
norman \(-15 \,{\mathrm e}^{x} x^{2}+4 \,{\mathrm e}^{x} x^{3}\) \(16\)
parallelrisch \(-15 \,{\mathrm e}^{x} x^{2}+4 \,{\mathrm e}^{x} x^{3}\) \(16\)
parts \(-15 \,{\mathrm e}^{x} x^{2}+4 \,{\mathrm e}^{x} x^{3}\) \(16\)
meijerg \(-\left (-4 x^{3}+12 x^{2}-24 x +24\right ) {\mathrm e}^{x}-\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}+15 \left (2-2 x \right ) {\mathrm e}^{x}\) \(44\)

[In]

int((4*x^3-3*x^2-30*x)*exp(x),x,method=_RETURNVERBOSE)

[Out]

x^2*(4*x-15)*exp(x)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.17 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx={\left (4 \, x^{3} - 15 \, x^{2}\right )} e^{x} \]

[In]

integrate((4*x^3-3*x^2-30*x)*exp(x),x, algorithm="fricas")

[Out]

(4*x^3 - 15*x^2)*e^x

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 12, normalized size of antiderivative = 1.00 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx=\left (4 x^{3} - 15 x^{2}\right ) e^{x} \]

[In]

integrate((4*x**3-3*x**2-30*x)*exp(x),x)

[Out]

(4*x**3 - 15*x**2)*exp(x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (11) = 22\).

Time = 0.17 (sec) , antiderivative size = 37, normalized size of antiderivative = 3.08 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx=4 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} - 3 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - 30 \, {\left (x - 1\right )} e^{x} \]

[In]

integrate((4*x^3-3*x^2-30*x)*exp(x),x, algorithm="maxima")

[Out]

4*(x^3 - 3*x^2 + 6*x - 6)*e^x - 3*(x^2 - 2*x + 2)*e^x - 30*(x - 1)*e^x

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.17 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx={\left (4 \, x^{3} - 15 \, x^{2}\right )} e^{x} \]

[In]

integrate((4*x^3-3*x^2-30*x)*exp(x),x, algorithm="giac")

[Out]

(4*x^3 - 15*x^2)*e^x

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 11, normalized size of antiderivative = 0.92 \[ \int e^x \left (-30 x-3 x^2+4 x^3\right ) \, dx=x^2\,{\mathrm {e}}^x\,\left (4\,x-15\right ) \]

[In]

int(-exp(x)*(30*x + 3*x^2 - 4*x^3),x)

[Out]

x^2*exp(x)*(4*x - 15)