\(\int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} (8000 x-1000 x^2)+e^{8+x} (1875 x^2-250 x^3)}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx\) [1578]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 84, antiderivative size = 24 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\frac {125 e^8 x}{\left (2+\frac {1}{2+\frac {e^{-x} x}{2}}\right )^2} \]

[Out]

125*x*exp(4)^2/(2+1/(1/2*x/exp(x)+2))^2

Rubi [F]

\[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx \]

[In]

Int[(10000*E^(8 + 3*x) + 125*E^8*x^3 + E^(8 + 2*x)*(8000*x - 1000*x^2) + E^(8 + x)*(1875*x^2 - 250*x^3))/(500*
E^(3*x) + 300*E^(2*x)*x + 60*E^x*x^2 + 4*x^3),x]

[Out]

20*E^8*x - (5*E^8*Defer[Int][x^3/(5*E^x + x)^3, x])/2 + (5*E^8*Defer[Int][x^4/(5*E^x + x)^3, x])/2 - (25*E^8*D
efer[Int][x^2/(5*E^x + x)^2, x])/4 + (15*E^8*Defer[Int][x^3/(5*E^x + x)^2, x])/2 + 20*E^8*Defer[Int][x/(5*E^x
+ x), x] - 10*E^8*Defer[Int][x^2/(5*E^x + x), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {125 e^8 \left (80 e^{3 x}-8 e^{2 x} (-8+x) x+x^3-e^x x^2 (-15+2 x)\right )}{4 \left (5 e^x+x\right )^3} \, dx \\ & = \frac {1}{4} \left (125 e^8\right ) \int \frac {80 e^{3 x}-8 e^{2 x} (-8+x) x+x^3-e^x x^2 (-15+2 x)}{\left (5 e^x+x\right )^3} \, dx \\ & = \frac {1}{4} \left (125 e^8\right ) \int \left (\frac {16}{25}+\frac {2 (-1+x) x^3}{25 \left (5 e^x+x\right )^3}-\frac {8 (-2+x) x}{25 \left (5 e^x+x\right )}+\frac {x^2 (-5+6 x)}{25 \left (5 e^x+x\right )^2}\right ) \, dx \\ & = 20 e^8 x+\frac {1}{4} \left (5 e^8\right ) \int \frac {x^2 (-5+6 x)}{\left (5 e^x+x\right )^2} \, dx+\frac {1}{2} \left (5 e^8\right ) \int \frac {(-1+x) x^3}{\left (5 e^x+x\right )^3} \, dx-\left (10 e^8\right ) \int \frac {(-2+x) x}{5 e^x+x} \, dx \\ & = 20 e^8 x+\frac {1}{4} \left (5 e^8\right ) \int \left (-\frac {5 x^2}{\left (5 e^x+x\right )^2}+\frac {6 x^3}{\left (5 e^x+x\right )^2}\right ) \, dx+\frac {1}{2} \left (5 e^8\right ) \int \left (-\frac {x^3}{\left (5 e^x+x\right )^3}+\frac {x^4}{\left (5 e^x+x\right )^3}\right ) \, dx-\left (10 e^8\right ) \int \left (-\frac {2 x}{5 e^x+x}+\frac {x^2}{5 e^x+x}\right ) \, dx \\ & = 20 e^8 x-\frac {1}{2} \left (5 e^8\right ) \int \frac {x^3}{\left (5 e^x+x\right )^3} \, dx+\frac {1}{2} \left (5 e^8\right ) \int \frac {x^4}{\left (5 e^x+x\right )^3} \, dx-\frac {1}{4} \left (25 e^8\right ) \int \frac {x^2}{\left (5 e^x+x\right )^2} \, dx+\frac {1}{2} \left (15 e^8\right ) \int \frac {x^3}{\left (5 e^x+x\right )^2} \, dx-\left (10 e^8\right ) \int \frac {x^2}{5 e^x+x} \, dx+\left (20 e^8\right ) \int \frac {x}{5 e^x+x} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 2.60 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.08 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\frac {125 e^8 x \left (4 e^x+x\right )^2}{4 \left (5 e^x+x\right )^2} \]

[In]

Integrate[(10000*E^(8 + 3*x) + 125*E^8*x^3 + E^(8 + 2*x)*(8000*x - 1000*x^2) + E^(8 + x)*(1875*x^2 - 250*x^3))
/(500*E^(3*x) + 300*E^(2*x)*x + 60*E^x*x^2 + 4*x^3),x]

[Out]

(125*E^8*x*(4*E^x + x)^2)/(4*(5*E^x + x)^2)

Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.25

method result size
risch \(20 x \,{\mathrm e}^{8}+\frac {5 \left (9 x +40 \,{\mathrm e}^{x}\right ) x^{2} {\mathrm e}^{8}}{4 \left (5 \,{\mathrm e}^{x}+x \right )^{2}}\) \(30\)
norman \(\frac {\frac {125 \,{\mathrm e}^{8} x^{3}}{4}+500 x \,{\mathrm e}^{8} {\mathrm e}^{2 x}+250 x^{2} {\mathrm e}^{8} {\mathrm e}^{x}}{\left (5 \,{\mathrm e}^{x}+x \right )^{2}}\) \(42\)
parallelrisch \(\frac {3125 \,{\mathrm e}^{8} x^{3}+25000 x^{2} {\mathrm e}^{8} {\mathrm e}^{x}+50000 x \,{\mathrm e}^{8} {\mathrm e}^{2 x}}{100 x^{2}+1000 \,{\mathrm e}^{x} x +2500 \,{\mathrm e}^{2 x}}\) \(52\)

[In]

int((10000*exp(4)^2*exp(x)^3+(-1000*x^2+8000*x)*exp(4)^2*exp(x)^2+(-250*x^3+1875*x^2)*exp(4)^2*exp(x)+125*x^3*
exp(4)^2)/(500*exp(x)^3+300*x*exp(x)^2+60*exp(x)*x^2+4*x^3),x,method=_RETURNVERBOSE)

[Out]

20*x*exp(8)+5/4*(9*x+40*exp(x))*x^2*exp(8)/(5*exp(x)+x)^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 51 vs. \(2 (19) = 38\).

Time = 0.25 (sec) , antiderivative size = 51, normalized size of antiderivative = 2.12 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\frac {125 \, {\left (x^{3} e^{24} + 8 \, x^{2} e^{\left (x + 24\right )} + 16 \, x e^{\left (2 \, x + 24\right )}\right )}}{4 \, {\left (x^{2} e^{16} + 10 \, x e^{\left (x + 16\right )} + 25 \, e^{\left (2 \, x + 16\right )}\right )}} \]

[In]

integrate((10000*exp(4)^2*exp(x)^3+(-1000*x^2+8000*x)*exp(4)^2*exp(x)^2+(-250*x^3+1875*x^2)*exp(4)^2*exp(x)+12
5*x^3*exp(4)^2)/(500*exp(x)^3+300*x*exp(x)^2+60*exp(x)*x^2+4*x^3),x, algorithm="fricas")

[Out]

125/4*(x^3*e^24 + 8*x^2*e^(x + 24) + 16*x*e^(2*x + 24))/(x^2*e^16 + 10*x*e^(x + 16) + 25*e^(2*x + 16))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 44 vs. \(2 (19) = 38\).

Time = 0.07 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.83 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=20 x e^{8} + \frac {45 x^{3} e^{8} + 200 x^{2} e^{8} e^{x}}{4 x^{2} + 40 x e^{x} + 100 e^{2 x}} \]

[In]

integrate((10000*exp(4)**2*exp(x)**3+(-1000*x**2+8000*x)*exp(4)**2*exp(x)**2+(-250*x**3+1875*x**2)*exp(4)**2*e
xp(x)+125*x**3*exp(4)**2)/(500*exp(x)**3+300*x*exp(x)**2+60*exp(x)*x**2+4*x**3),x)

[Out]

20*x*exp(8) + (45*x**3*exp(8) + 200*x**2*exp(8)*exp(x))/(4*x**2 + 40*x*exp(x) + 100*exp(2*x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 44 vs. \(2 (19) = 38\).

Time = 0.23 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.83 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\frac {125 \, {\left (x^{3} e^{8} + 8 \, x^{2} e^{\left (x + 8\right )} + 16 \, x e^{\left (2 \, x + 8\right )}\right )}}{4 \, {\left (x^{2} + 10 \, x e^{x} + 25 \, e^{\left (2 \, x\right )}\right )}} \]

[In]

integrate((10000*exp(4)^2*exp(x)^3+(-1000*x^2+8000*x)*exp(4)^2*exp(x)^2+(-250*x^3+1875*x^2)*exp(4)^2*exp(x)+12
5*x^3*exp(4)^2)/(500*exp(x)^3+300*x*exp(x)^2+60*exp(x)*x^2+4*x^3),x, algorithm="maxima")

[Out]

125/4*(x^3*e^8 + 8*x^2*e^(x + 8) + 16*x*e^(2*x + 8))/(x^2 + 10*x*e^x + 25*e^(2*x))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 114 vs. \(2 (19) = 38\).

Time = 0.27 (sec) , antiderivative size = 114, normalized size of antiderivative = 4.75 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\frac {5 \, {\left (25 \, {\left (x + 8\right )}^{3} e^{24} - 472 \, {\left (x + 8\right )}^{2} e^{24} + 200 \, {\left (x + 8\right )}^{2} e^{\left (x + 24\right )} + 2752 \, {\left (x + 8\right )} e^{24} + 400 \, {\left (x + 8\right )} e^{\left (2 \, x + 24\right )} - 1920 \, {\left (x + 8\right )} e^{\left (x + 24\right )} - 4608 \, e^{24} + 2560 \, e^{\left (x + 24\right )}\right )}}{4 \, {\left ({\left (x + 8\right )}^{2} e^{16} - 16 \, {\left (x + 8\right )} e^{16} + 10 \, {\left (x + 8\right )} e^{\left (x + 16\right )} + 64 \, e^{16} + 25 \, e^{\left (2 \, x + 16\right )} - 80 \, e^{\left (x + 16\right )}\right )}} \]

[In]

integrate((10000*exp(4)^2*exp(x)^3+(-1000*x^2+8000*x)*exp(4)^2*exp(x)^2+(-250*x^3+1875*x^2)*exp(4)^2*exp(x)+12
5*x^3*exp(4)^2)/(500*exp(x)^3+300*x*exp(x)^2+60*exp(x)*x^2+4*x^3),x, algorithm="giac")

[Out]

5/4*(25*(x + 8)^3*e^24 - 472*(x + 8)^2*e^24 + 200*(x + 8)^2*e^(x + 24) + 2752*(x + 8)*e^24 + 400*(x + 8)*e^(2*
x + 24) - 1920*(x + 8)*e^(x + 24) - 4608*e^24 + 2560*e^(x + 24))/((x + 8)^2*e^16 - 16*(x + 8)*e^16 + 10*(x + 8
)*e^(x + 16) + 64*e^16 + 25*e^(2*x + 16) - 80*e^(x + 16))

Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.83 \[ \int \frac {10000 e^{8+3 x}+125 e^8 x^3+e^{8+2 x} \left (8000 x-1000 x^2\right )+e^{8+x} \left (1875 x^2-250 x^3\right )}{500 e^{3 x}+300 e^{2 x} x+60 e^x x^2+4 x^3} \, dx=\frac {125\,x\,\left (16\,{\mathrm {e}}^{2\,x+8}+8\,x\,{\mathrm {e}}^{x+8}+x^2\,{\mathrm {e}}^8\right )}{4\,\left (25\,{\mathrm {e}}^{2\,x}+10\,x\,{\mathrm {e}}^x+x^2\right )} \]

[In]

int((10000*exp(3*x)*exp(8) + 125*x^3*exp(8) + exp(2*x)*exp(8)*(8000*x - 1000*x^2) + exp(8)*exp(x)*(1875*x^2 -
250*x^3))/(500*exp(3*x) + 300*x*exp(2*x) + 60*x^2*exp(x) + 4*x^3),x)

[Out]

(125*x*(16*exp(2*x + 8) + 8*x*exp(x + 8) + x^2*exp(8)))/(4*(25*exp(2*x) + 10*x*exp(x) + x^2))