\(\int \frac {e^x (-60 x^2+24 x^3) \log ^2(x)+e^x (24 x^2-12 x^3) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x))}{3 x^5 \log ^2(x)} \, dx\) [1913]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 98, antiderivative size = 33 \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=\frac {4 e^x \left (2-e^{-x+\frac {5}{3 x^2 \log (x)}}-\log (x)\right )}{x^2} \]

[Out]

4*exp(x)/x^2*(2-exp(5/3/x^2/ln(x)-x)-ln(x))

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 66, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {12, 6874, 2326} \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=\frac {4 e^x (2 x-x \log (x))}{x^3}-\frac {4 e^{\frac {5}{3 x^2 \log (x)}} (2 \log (x)+1)}{x^5 \left (\frac {1}{x^3 \log ^2(x)}+\frac {2}{x^3 \log (x)}\right ) \log ^2(x)} \]

[In]

Int[(E^x*(-60*x^2 + 24*x^3)*Log[x]^2 + E^x*(24*x^2 - 12*x^3)*Log[x]^3 + E^((5 - 3*x^3*Log[x])/(3*x^2*Log[x]))*
(20*E^x + 40*E^x*Log[x] + 24*E^x*x^2*Log[x]^2))/(3*x^5*Log[x]^2),x]

[Out]

(-4*E^(5/(3*x^2*Log[x]))*(1 + 2*Log[x]))/(x^5*(1/(x^3*Log[x]^2) + 2/(x^3*Log[x]))*Log[x]^2) + (4*E^x*(2*x - x*
Log[x]))/x^3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{x^5 \log ^2(x)} \, dx \\ & = \frac {1}{3} \int \left (-\frac {12 e^x (5-2 x-2 \log (x)+x \log (x))}{x^3}+\frac {4 e^{\frac {5}{3 x^2 \log (x)}} \left (5+10 \log (x)+6 x^2 \log ^2(x)\right )}{x^5 \log ^2(x)}\right ) \, dx \\ & = \frac {4}{3} \int \frac {e^{\frac {5}{3 x^2 \log (x)}} \left (5+10 \log (x)+6 x^2 \log ^2(x)\right )}{x^5 \log ^2(x)} \, dx-4 \int \frac {e^x (5-2 x-2 \log (x)+x \log (x))}{x^3} \, dx \\ & = -\frac {4 e^{\frac {5}{3 x^2 \log (x)}} (1+2 \log (x))}{x^5 \left (\frac {1}{x^3 \log ^2(x)}+\frac {2}{x^3 \log (x)}\right ) \log ^2(x)}+\frac {4 e^x (2 x-x \log (x))}{x^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.91 \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=-\frac {4 \left (-2 e^x+e^{\frac {5}{3 x^2 \log (x)}}+e^x \log (x)\right )}{x^2} \]

[In]

Integrate[(E^x*(-60*x^2 + 24*x^3)*Log[x]^2 + E^x*(24*x^2 - 12*x^3)*Log[x]^3 + E^((5 - 3*x^3*Log[x])/(3*x^2*Log
[x]))*(20*E^x + 40*E^x*Log[x] + 24*E^x*x^2*Log[x]^2))/(3*x^5*Log[x]^2),x]

[Out]

(-4*(-2*E^x + E^(5/(3*x^2*Log[x])) + E^x*Log[x]))/x^2

Maple [A] (verified)

Time = 1.31 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.00

method result size
risch \(-\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{2}}+\frac {8 \,{\mathrm e}^{x}}{x^{2}}-\frac {4 \,{\mathrm e}^{\frac {5}{3 x^{2} \ln \left (x \right )}}}{x^{2}}\) \(33\)
parallelrisch \(\frac {-12 \,{\mathrm e}^{x} \ln \left (x \right )-12 \,{\mathrm e}^{x} {\mathrm e}^{-\frac {3 x^{3} \ln \left (x \right )-5}{3 \ln \left (x \right ) x^{2}}}+24 \,{\mathrm e}^{x}}{3 x^{2}}\) \(40\)

[In]

int(1/3*((24*x^2*exp(x)*ln(x)^2+40*exp(x)*ln(x)+20*exp(x))*exp(1/3*(-3*x^3*ln(x)+5)/x^2/ln(x))+(-12*x^3+24*x^2
)*exp(x)*ln(x)^3+(24*x^3-60*x^2)*exp(x)*ln(x)^2)/x^5/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

-4*exp(x)*ln(x)/x^2+8*exp(x)/x^2-4/x^2*exp(5/3/x^2/ln(x))

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.09 \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=-\frac {4 \, {\left (e^{x} \log \left (x\right ) + e^{\left (x - \frac {3 \, x^{3} \log \left (x\right ) - 5}{3 \, x^{2} \log \left (x\right )}\right )} - 2 \, e^{x}\right )}}{x^{2}} \]

[In]

integrate(1/3*((24*x^2*exp(x)*log(x)^2+40*exp(x)*log(x)+20*exp(x))*exp(1/3*(-3*x^3*log(x)+5)/x^2/log(x))+(-12*
x^3+24*x^2)*exp(x)*log(x)^3+(24*x^3-60*x^2)*exp(x)*log(x)^2)/x^5/log(x)^2,x, algorithm="fricas")

[Out]

-4*(e^x*log(x) + e^(x - 1/3*(3*x^3*log(x) - 5)/(x^2*log(x))) - 2*e^x)/x^2

Sympy [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.18 \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=\frac {\left (8 - 4 \log {\left (x \right )}\right ) e^{x}}{x^{2}} - \frac {4 e^{x} e^{\frac {- x^{3} \log {\left (x \right )} + \frac {5}{3}}{x^{2} \log {\left (x \right )}}}}{x^{2}} \]

[In]

integrate(1/3*((24*x**2*exp(x)*ln(x)**2+40*exp(x)*ln(x)+20*exp(x))*exp(1/3*(-3*x**3*ln(x)+5)/x**2/ln(x))+(-12*
x**3+24*x**2)*exp(x)*ln(x)**3+(24*x**3-60*x**2)*exp(x)*ln(x)**2)/x**5/ln(x)**2,x)

[Out]

(8 - 4*log(x))*exp(x)/x**2 - 4*exp(x)*exp((-x**3*log(x) + 5/3)/(x**2*log(x)))/x**2

Maxima [F(-2)]

Exception generated. \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/3*((24*x^2*exp(x)*log(x)^2+40*exp(x)*log(x)+20*exp(x))*exp(1/3*(-3*x^3*log(x)+5)/x^2/log(x))+(-12*
x^3+24*x^2)*exp(x)*log(x)^3+(24*x^3-60*x^2)*exp(x)*log(x)^2)/x^5/log(x)^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: In function CAR, the value of the first argument is  0which is not
 of the expected type LIST

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.76 \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=-\frac {4 \, {\left (e^{x} \log \left (x\right ) - 2 \, e^{x} + e^{\left (\frac {5}{3 \, x^{2} \log \left (x\right )}\right )}\right )}}{x^{2}} \]

[In]

integrate(1/3*((24*x^2*exp(x)*log(x)^2+40*exp(x)*log(x)+20*exp(x))*exp(1/3*(-3*x^3*log(x)+5)/x^2/log(x))+(-12*
x^3+24*x^2)*exp(x)*log(x)^3+(24*x^3-60*x^2)*exp(x)*log(x)^2)/x^5/log(x)^2,x, algorithm="giac")

[Out]

-4*(e^x*log(x) - 2*e^x + e^(5/3/(x^2*log(x))))/x^2

Mupad [B] (verification not implemented)

Time = 10.24 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.97 \[ \int \frac {e^x \left (-60 x^2+24 x^3\right ) \log ^2(x)+e^x \left (24 x^2-12 x^3\right ) \log ^3(x)+e^{\frac {5-3 x^3 \log (x)}{3 x^2 \log (x)}} \left (20 e^x+40 e^x \log (x)+24 e^x x^2 \log ^2(x)\right )}{3 x^5 \log ^2(x)} \, dx=\frac {8\,{\mathrm {e}}^x}{x^2}-\frac {4\,{\mathrm {e}}^{\frac {5}{3\,x^2\,\ln \left (x\right )}}}{x^2}-\frac {4\,{\mathrm {e}}^x\,\ln \left (x\right )}{x^2} \]

[In]

int(((exp(-(x^3*log(x) - 5/3)/(x^2*log(x)))*(20*exp(x) + 40*exp(x)*log(x) + 24*x^2*exp(x)*log(x)^2))/3 + (exp(
x)*log(x)^3*(24*x^2 - 12*x^3))/3 - (exp(x)*log(x)^2*(60*x^2 - 24*x^3))/3)/(x^5*log(x)^2),x)

[Out]

(8*exp(x))/x^2 - (4*exp(5/(3*x^2*log(x))))/x^2 - (4*exp(x)*log(x))/x^2