\(\int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} (-6+2 x+x^2)}{25+e^{e^{-1+4 x}} (-6+x^2)} \, dx\) [2001]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 49, antiderivative size = 21 \[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=x+\log \left (-6+25 e^{-e^{-1+4 x}}+x^2\right ) \]

[Out]

x+ln(x^2+25/exp(exp(-1+4*x))-6)

Rubi [F]

\[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=\int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx \]

[In]

Int[(25 - 100*E^(-1 + 4*x) + E^E^(-1 + 4*x)*(-6 + 2*x + x^2))/(25 + E^E^(-1 + 4*x)*(-6 + x^2)),x]

[Out]

x + Log[6 - x^2] - 100*Defer[Int][E^(-1 + 4*x)/(25 + E^E^(-1 + 4*x)*(-6 + x^2)), x] + 25*Defer[Int][1/((Sqrt[6
] - x)*(25 + E^E^(-1 + 4*x)*(-6 + x^2))), x] - 25*Defer[Int][1/((Sqrt[6] + x)*(25 + E^E^(-1 + 4*x)*(-6 + x^2))
), x]

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {100 e^{-1+4 x}}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2}+\frac {25-6 e^{e^{-1+4 x}}+2 e^{e^{-1+4 x}} x+e^{e^{-1+4 x}} x^2}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2}\right ) \, dx \\ & = -\left (100 \int \frac {e^{-1+4 x}}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2} \, dx\right )+\int \frac {25-6 e^{e^{-1+4 x}}+2 e^{e^{-1+4 x}} x+e^{e^{-1+4 x}} x^2}{25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2} \, dx \\ & = -\left (100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\right )+\int \frac {25+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx \\ & = -\left (100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx\right )+\int \left (\frac {-6+2 x+x^2}{-6+x^2}-\frac {50 x}{\left (-6+x^2\right ) \left (25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2\right )}\right ) \, dx \\ & = -\left (50 \int \frac {x}{\left (-6+x^2\right ) \left (25-6 e^{e^{-1+4 x}}+e^{e^{-1+4 x}} x^2\right )} \, dx\right )-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx+\int \frac {-6+2 x+x^2}{-6+x^2} \, dx \\ & = -\left (50 \int \frac {x}{\left (-6+x^2\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )} \, dx\right )-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx+\int \left (1+\frac {2 x}{-6+x^2}\right ) \, dx \\ & = x+2 \int \frac {x}{-6+x^2} \, dx-50 \int \left (-\frac {1}{2 \left (\sqrt {6}-x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )}+\frac {1}{2 \left (\sqrt {6}+x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )}\right ) \, dx-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx \\ & = x+\log \left (6-x^2\right )+25 \int \frac {1}{\left (\sqrt {6}-x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )} \, dx-25 \int \frac {1}{\left (\sqrt {6}+x\right ) \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right )} \, dx-100 \int \frac {e^{-1+4 x}}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 1.10 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.38 \[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=-e^{-1+4 x}+x+\log \left (25+e^{e^{-1+4 x}} \left (-6+x^2\right )\right ) \]

[In]

Integrate[(25 - 100*E^(-1 + 4*x) + E^E^(-1 + 4*x)*(-6 + 2*x + x^2))/(25 + E^E^(-1 + 4*x)*(-6 + x^2)),x]

[Out]

-E^(-1 + 4*x) + x + Log[25 + E^E^(-1 + 4*x)*(-6 + x^2)]

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.62

method result size
norman \(x -{\mathrm e}^{-1+4 x}+\ln \left ({\mathrm e}^{{\mathrm e}^{-1+4 x}} x^{2}-6 \,{\mathrm e}^{{\mathrm e}^{-1+4 x}}+25\right )\) \(34\)
parallelrisch \(x -{\mathrm e}^{-1+4 x}+\ln \left ({\mathrm e}^{{\mathrm e}^{-1+4 x}} x^{2}-6 \,{\mathrm e}^{{\mathrm e}^{-1+4 x}}+25\right )\) \(34\)
risch \(x +\ln \left (x^{2}-6\right )-{\mathrm e}^{-1+4 x}+\ln \left ({\mathrm e}^{{\mathrm e}^{-1+4 x}}+\frac {25}{x^{2}-6}\right )\) \(35\)

[In]

int(((x^2+2*x-6)*exp(exp(-1+4*x))-100*exp(-1+4*x)+25)/((x^2-6)*exp(exp(-1+4*x))+25),x,method=_RETURNVERBOSE)

[Out]

x-exp(-1+4*x)+ln(exp(exp(-1+4*x))*x^2-6*exp(exp(-1+4*x))+25)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 40 vs. \(2 (19) = 38\).

Time = 0.28 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.90 \[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=x - e^{\left (4 \, x - 1\right )} + \log \left (x^{2} - 6\right ) + \log \left (\frac {{\left (x^{2} - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} + 25}{x^{2} - 6}\right ) \]

[In]

integrate(((x^2+2*x-6)*exp(exp(-1+4*x))-100*exp(-1+4*x)+25)/((x^2-6)*exp(exp(-1+4*x))+25),x, algorithm="fricas
")

[Out]

x - e^(4*x - 1) + log(x^2 - 6) + log(((x^2 - 6)*e^(e^(4*x - 1)) + 25)/(x^2 - 6))

Sympy [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.48 \[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=x - e^{4 x - 1} + \log {\left (x^{2} - 6 \right )} + \log {\left (e^{e^{4 x - 1}} + \frac {25}{x^{2} - 6} \right )} \]

[In]

integrate(((x**2+2*x-6)*exp(exp(-1+4*x))-100*exp(-1+4*x)+25)/((x**2-6)*exp(exp(-1+4*x))+25),x)

[Out]

x - exp(4*x - 1) + log(x**2 - 6) + log(exp(exp(4*x - 1)) + 25/(x**2 - 6))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 45 vs. \(2 (19) = 38\).

Time = 0.22 (sec) , antiderivative size = 45, normalized size of antiderivative = 2.14 \[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx={\left (x e - e^{\left (4 \, x\right )}\right )} e^{\left (-1\right )} + \log \left (x^{2} - 6\right ) + \log \left (\frac {{\left (x^{2} - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} + 25}{x^{2} - 6}\right ) \]

[In]

integrate(((x^2+2*x-6)*exp(exp(-1+4*x))-100*exp(-1+4*x)+25)/((x^2-6)*exp(exp(-1+4*x))+25),x, algorithm="maxima
")

[Out]

(x*e - e^(4*x))*e^(-1) + log(x^2 - 6) + log(((x^2 - 6)*e^(e^(4*x - 1)) + 25)/(x^2 - 6))

Giac [F]

\[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=\int { \frac {{\left (x^{2} + 2 \, x - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} - 100 \, e^{\left (4 \, x - 1\right )} + 25}{{\left (x^{2} - 6\right )} e^{\left (e^{\left (4 \, x - 1\right )}\right )} + 25} \,d x } \]

[In]

integrate(((x^2+2*x-6)*exp(exp(-1+4*x))-100*exp(-1+4*x)+25)/((x^2-6)*exp(exp(-1+4*x))+25),x, algorithm="giac")

[Out]

integrate(((x^2 + 2*x - 6)*e^(e^(4*x - 1)) - 100*e^(4*x - 1) + 25)/((x^2 - 6)*e^(e^(4*x - 1)) + 25), x)

Mupad [B] (verification not implemented)

Time = 9.71 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.57 \[ \int \frac {25-100 e^{-1+4 x}+e^{e^{-1+4 x}} \left (-6+2 x+x^2\right )}{25+e^{e^{-1+4 x}} \left (-6+x^2\right )} \, dx=x+\ln \left (x^2\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x-1}}-6\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x-1}}+25\right )-{\mathrm {e}}^{4\,x-1} \]

[In]

int((exp(exp(4*x - 1))*(2*x + x^2 - 6) - 100*exp(4*x - 1) + 25)/(exp(exp(4*x - 1))*(x^2 - 6) + 25),x)

[Out]

x + log(x^2*exp(exp(4*x - 1)) - 6*exp(exp(4*x - 1)) + 25) - exp(4*x - 1)