\(\int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx\) [2168]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 86, antiderivative size = 29 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=\frac {7}{10 \left (e^{3-e^2-e^{x+\log ^2(3)} x}+\log (3)\right )} \]

[Out]

7/10/(ln(3)+exp(-x*exp(ln(3)^2+x)-exp(2)+3))

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.24, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6820, 12, 6818} \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=-\frac {7 e^3}{10 \log (3) \left (\log (3) e^{x e^{x+\log ^2(3)}+e^2}+e^3\right )} \]

[In]

Int[(E^(3 - E^2 + x - E^(x + Log[3]^2)*x + Log[3]^2)*(7 + 7*x))/(10*E^(6 - 2*E^2 - 2*E^(x + Log[3]^2)*x) + 20*
E^(3 - E^2 - E^(x + Log[3]^2)*x)*Log[3] + 10*Log[3]^2),x]

[Out]

(-7*E^3)/(10*Log[3]*(E^3 + E^(E^2 + E^(x + Log[3]^2)*x)*Log[3]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6818

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*(y^(m + 1)/(m + 1)), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {7 \exp \left (x+e^{x+\log ^2(3)} x+3 \left (1+\frac {1}{3} \left (e^2+\log ^2(3)\right )\right )\right ) (1+x)}{10 \left (e^3+e^{e^2+e^{x+\log ^2(3)} x} \log (3)\right )^2} \, dx \\ & = \frac {7}{10} \int \frac {\exp \left (x+e^{x+\log ^2(3)} x+3 \left (1+\frac {1}{3} \left (e^2+\log ^2(3)\right )\right )\right ) (1+x)}{\left (e^3+e^{e^2+e^{x+\log ^2(3)} x} \log (3)\right )^2} \, dx \\ & = -\frac {7 e^3}{10 \log (3) \left (e^3+e^{e^2+e^{x+\log ^2(3)} x} \log (3)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.24 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=-\frac {7 e^3}{10 \log (3) \left (e^3+e^{e^2+e^{x+\log ^2(3)} x} \log (3)\right )} \]

[In]

Integrate[(E^(3 - E^2 + x - E^(x + Log[3]^2)*x + Log[3]^2)*(7 + 7*x))/(10*E^(6 - 2*E^2 - 2*E^(x + Log[3]^2)*x)
 + 20*E^(3 - E^2 - E^(x + Log[3]^2)*x)*Log[3] + 10*Log[3]^2),x]

[Out]

(-7*E^3)/(10*Log[3]*(E^3 + E^(E^2 + E^(x + Log[3]^2)*x)*Log[3]))

Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.86

method result size
default \(\frac {7}{10 \left (\ln \left (3\right )+{\mathrm e}^{-x \,{\mathrm e}^{\ln \left (3\right )^{2}+x}-{\mathrm e}^{2}+3}\right )}\) \(25\)
norman \(\frac {7}{10 \left (\ln \left (3\right )+{\mathrm e}^{-x \,{\mathrm e}^{\ln \left (3\right )^{2}+x}-{\mathrm e}^{2}+3}\right )}\) \(25\)
risch \(\frac {7}{10 \left (\ln \left (3\right )+{\mathrm e}^{-x \,{\mathrm e}^{\ln \left (3\right )^{2}+x}-{\mathrm e}^{2}+3}\right )}\) \(25\)
parallelrisch \(\frac {7}{10 \left (\ln \left (3\right )+{\mathrm e}^{-x \,{\mathrm e}^{\ln \left (3\right )^{2}+x}-{\mathrm e}^{2}+3}\right )}\) \(25\)

[In]

int((7*x+7)*exp(ln(3)^2+x)*exp(-x*exp(ln(3)^2+x)-exp(2)+3)/(10*exp(-x*exp(ln(3)^2+x)-exp(2)+3)^2+20*ln(3)*exp(
-x*exp(ln(3)^2+x)-exp(2)+3)+10*ln(3)^2),x,method=_RETURNVERBOSE)

[Out]

7/10/(ln(3)+exp(-x*exp(ln(3)^2+x)-exp(2)+3))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.52 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=\frac {7 \, e^{\left (\log \left (3\right )^{2} + x\right )}}{10 \, {\left (e^{\left (\log \left (3\right )^{2} + x\right )} \log \left (3\right ) + e^{\left (-x e^{\left (\log \left (3\right )^{2} + x\right )} + \log \left (3\right )^{2} + x - e^{2} + 3\right )}\right )}} \]

[In]

integrate((7*x+7)*exp(log(3)^2+x)*exp(-x*exp(log(3)^2+x)-exp(2)+3)/(10*exp(-x*exp(log(3)^2+x)-exp(2)+3)^2+20*l
og(3)*exp(-x*exp(log(3)^2+x)-exp(2)+3)+10*log(3)^2),x, algorithm="fricas")

[Out]

7/10*e^(log(3)^2 + x)/(e^(log(3)^2 + x)*log(3) + e^(-x*e^(log(3)^2 + x) + log(3)^2 + x - e^2 + 3))

Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.83 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=\frac {7}{10 e^{- x e^{x + \log {\left (3 \right )}^{2}} - e^{2} + 3} + 10 \log {\left (3 \right )}} \]

[In]

integrate((7*x+7)*exp(ln(3)**2+x)*exp(-x*exp(ln(3)**2+x)-exp(2)+3)/(10*exp(-x*exp(ln(3)**2+x)-exp(2)+3)**2+20*
ln(3)*exp(-x*exp(ln(3)**2+x)-exp(2)+3)+10*ln(3)**2),x)

[Out]

7/(10*exp(-x*exp(x + log(3)**2) - exp(2) + 3) + 10*log(3))

Maxima [A] (verification not implemented)

none

Time = 0.39 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.03 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=-\frac {7 \, e^{3}}{10 \, {\left (e^{\left (x e^{\left (\log \left (3\right )^{2} + x\right )} + e^{2}\right )} \log \left (3\right )^{2} + e^{3} \log \left (3\right )\right )}} \]

[In]

integrate((7*x+7)*exp(log(3)^2+x)*exp(-x*exp(log(3)^2+x)-exp(2)+3)/(10*exp(-x*exp(log(3)^2+x)-exp(2)+3)^2+20*l
og(3)*exp(-x*exp(log(3)^2+x)-exp(2)+3)+10*log(3)^2),x, algorithm="maxima")

[Out]

-7/10*e^3/(e^(x*e^(log(3)^2 + x) + e^2)*log(3)^2 + e^3*log(3))

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.00 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=-\frac {7 \, e^{3}}{10 \, {\left (e^{\left (x e^{\left (\log \left (3\right )^{2} + x\right )} + e^{2}\right )} \log \left (3\right ) + e^{3}\right )} \log \left (3\right )} \]

[In]

integrate((7*x+7)*exp(log(3)^2+x)*exp(-x*exp(log(3)^2+x)-exp(2)+3)/(10*exp(-x*exp(log(3)^2+x)-exp(2)+3)^2+20*l
og(3)*exp(-x*exp(log(3)^2+x)-exp(2)+3)+10*log(3)^2),x, algorithm="giac")

[Out]

-7/10*e^3/((e^(x*e^(log(3)^2 + x) + e^2)*log(3) + e^3)*log(3))

Mupad [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.00 \[ \int \frac {e^{3-e^2+x-e^{x+\log ^2(3)} x+\log ^2(3)} (7+7 x)}{10 e^{6-2 e^2-2 e^{x+\log ^2(3)} x}+20 e^{3-e^2-e^{x+\log ^2(3)} x} \log (3)+10 \log ^2(3)} \, dx=\frac {7}{10\,\left (\ln \left (3\right )+{\mathrm {e}}^{-{\mathrm {e}}^2}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{{\ln \left (3\right )}^2}\,{\mathrm {e}}^x}\,{\mathrm {e}}^3\right )} \]

[In]

int((exp(x + log(3)^2)*exp(3 - x*exp(x + log(3)^2) - exp(2))*(7*x + 7))/(10*exp(6 - 2*x*exp(x + log(3)^2) - 2*
exp(2)) + 20*exp(3 - x*exp(x + log(3)^2) - exp(2))*log(3) + 10*log(3)^2),x)

[Out]

7/(10*(log(3) + exp(-exp(2))*exp(-x*exp(log(3)^2)*exp(x))*exp(3)))