\(\int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} (-750-250 x-20 x^2+x^7)}{5 x^7} \, dx\) [2487]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 47, antiderivative size = 20 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{30+\frac {3+x}{5}+\frac {(5+x)^2}{x^6}} \]

[Out]

exp(153/5+1/5*x+(5+x)^2/x^6)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.35, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {12, 6838} \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{\frac {x^7+153 x^6+5 x^2+50 x+125}{5 x^6}} \]

[In]

Int[(E^((125 + 50*x + 5*x^2 + 153*x^6 + x^7)/(5*x^6))*(-750 - 250*x - 20*x^2 + x^7))/(5*x^7),x]

[Out]

E^((125 + 50*x + 5*x^2 + 153*x^6 + x^7)/(5*x^6))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6838

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q*(F^v/Log[F]), x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{5} \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{x^7} \, dx \\ & = e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.20 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{\frac {153}{5}+\frac {25}{x^6}+\frac {10}{x^5}+\frac {1}{x^4}+\frac {x}{5}} \]

[In]

Integrate[(E^((125 + 50*x + 5*x^2 + 153*x^6 + x^7)/(5*x^6))*(-750 - 250*x - 20*x^2 + x^7))/(5*x^7),x]

[Out]

E^(153/5 + 25/x^6 + 10/x^5 + x^(-4) + x/5)

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.25

method result size
gosper \({\mathrm e}^{\frac {x^{7}+153 x^{6}+5 x^{2}+50 x +125}{5 x^{6}}}\) \(25\)
derivativedivides \({\mathrm e}^{\frac {x^{7}+153 x^{6}+5 x^{2}+50 x +125}{5 x^{6}}}\) \(25\)
default \({\mathrm e}^{\frac {x^{7}+153 x^{6}+5 x^{2}+50 x +125}{5 x^{6}}}\) \(25\)
norman \({\mathrm e}^{\frac {x^{7}+153 x^{6}+5 x^{2}+50 x +125}{5 x^{6}}}\) \(25\)
risch \({\mathrm e}^{\frac {x^{7}+153 x^{6}+5 x^{2}+50 x +125}{5 x^{6}}}\) \(25\)
parallelrisch \({\mathrm e}^{\frac {x^{7}+153 x^{6}+5 x^{2}+50 x +125}{5 x^{6}}}\) \(25\)

[In]

int(1/5*(x^7-20*x^2-250*x-750)*exp(1/5*(x^7+153*x^6+5*x^2+50*x+125)/x^6)/x^7,x,method=_RETURNVERBOSE)

[Out]

exp(1/5*(x^7+153*x^6+5*x^2+50*x+125)/x^6)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.20 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{\left (\frac {x^{7} + 153 \, x^{6} + 5 \, x^{2} + 50 \, x + 125}{5 \, x^{6}}\right )} \]

[In]

integrate(1/5*(x^7-20*x^2-250*x-750)*exp(1/5*(x^7+153*x^6+5*x^2+50*x+125)/x^6)/x^7,x, algorithm="fricas")

[Out]

e^(1/5*(x^7 + 153*x^6 + 5*x^2 + 50*x + 125)/x^6)

Sympy [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.20 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{\frac {\frac {x^{7}}{5} + \frac {153 x^{6}}{5} + x^{2} + 10 x + 25}{x^{6}}} \]

[In]

integrate(1/5*(x**7-20*x**2-250*x-750)*exp(1/5*(x**7+153*x**6+5*x**2+50*x+125)/x**6)/x**7,x)

[Out]

exp((x**7/5 + 153*x**6/5 + x**2 + 10*x + 25)/x**6)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.95 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{\left (\frac {1}{5} \, x + \frac {1}{x^{4}} + \frac {10}{x^{5}} + \frac {25}{x^{6}} + \frac {153}{5}\right )} \]

[In]

integrate(1/5*(x^7-20*x^2-250*x-750)*exp(1/5*(x^7+153*x^6+5*x^2+50*x+125)/x^6)/x^7,x, algorithm="maxima")

[Out]

e^(1/5*x + 1/x^4 + 10/x^5 + 25/x^6 + 153/5)

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.95 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx=e^{\left (\frac {1}{5} \, x + \frac {1}{x^{4}} + \frac {10}{x^{5}} + \frac {25}{x^{6}} + \frac {153}{5}\right )} \]

[In]

integrate(1/5*(x^7-20*x^2-250*x-750)*exp(1/5*(x^7+153*x^6+5*x^2+50*x+125)/x^6)/x^7,x, algorithm="giac")

[Out]

e^(1/5*x + 1/x^4 + 10/x^5 + 25/x^6 + 153/5)

Mupad [B] (verification not implemented)

Time = 10.48 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.15 \[ \int \frac {e^{\frac {125+50 x+5 x^2+153 x^6+x^7}{5 x^6}} \left (-750-250 x-20 x^2+x^7\right )}{5 x^7} \, dx={\mathrm {e}}^{x/5}\,{\mathrm {e}}^{\frac {1}{x^4}}\,{\mathrm {e}}^{153/5}\,{\mathrm {e}}^{\frac {10}{x^5}}\,{\mathrm {e}}^{\frac {25}{x^6}} \]

[In]

int(-(exp((10*x + x^2 + (153*x^6)/5 + x^7/5 + 25)/x^6)*(250*x + 20*x^2 - x^7 + 750))/(5*x^7),x)

[Out]

exp(x/5)*exp(1/x^4)*exp(153/5)*exp(10/x^5)*exp(25/x^6)