\(\int \frac {-32 x^7-12 x^8+16 x^9+e^2 (144 x^3+576 x^5+576 x^7)+e (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8)}{x^6+e^2 (9+36 x^2+36 x^4)+e (-6 x^3-12 x^5)} \, dx\) [182]

   Optimal result
   Rubi [C] (warning: unable to verify)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 100, antiderivative size = 26 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=4 x^3 \left (x-\frac {4+x}{-e \left (6+\frac {3}{x^2}\right )+x}\right ) \]

[Out]

4*(x-(4+x)/(x-(6+3/x^2)*exp(1)))*x^3

Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 3 vs. order 1 in optimal.

Time = 116.90 (sec) , antiderivative size = 6830, normalized size of antiderivative = 262.69, number of steps used = 20, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2099, 2126, 2106, 2104, 836, 814, 648, 632, 210, 642} \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx =\text {Too large to display} \]

[In]

Int[(-32*x^7 - 12*x^8 + 16*x^9 + E^2*(144*x^3 + 576*x^5 + 576*x^7) + E*(240*x^4 + 72*x^5 + 192*x^6 + 96*x^7 -
192*x^8))/(x^6 + E^2*(9 + 36*x^2 + 36*x^4) + E*(-6*x^3 - 12*x^5)),x]

[Out]

(96*E*(1 + 3*E + 72*E^2 + 108*E^3))/(2^(1/3)*((8*E^(5/3))/(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + (2*E*(3 + 16
*E^2 + Sqrt[9 + 96*E^2]))^(1/3)) + 2*(2*E - x)) - (144*2^(2/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(4/3)*(2*E^
(1/3)*(3 + 32*E^2)*(1 + 3*E + 72*E^2 + 108*E^3) - ((2^(1/3)*(1 + 3*E + 104*E^2 + 180*E^3 + 1152*E^4 + 1728*E^5
)*(3 + 16*E^2 + Sqrt[9 + 96*E^2] + 32*E^(8/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)) - E^(2/3)*(10 + 21*E
+ 352*E^2 + 576*E^3 + 2304*E^4 + 3456*E^5)*(8*2^(1/3)*E^(4/3) + (2*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)))*(2
*E - x))/(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)))/((3*(3 + Sqrt[9 + 96*E^2]) + 16*E^2*(6 + Sqrt[9 + 96*E^2]))*(
8*E^(4/3) - 2^(1/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3))*(8*E^2 - 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E
^2]))^(2/3) - 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*((8*E^(5/3))/(3 + 16*E^2 + Sqrt[9 +
96*E^2])^(1/3) + (2*E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3))*(2*E - x) - 2*(2*E - x)^2)*(2*E + 4*E^(5/3)*(2/(
3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + ((E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))/2)^(1/3) - x)) - 48*E*(2 + 3*E)*x
 - 8*(2 + 3*E)*x^2 - 4*x^3 + 4*x^4 + (36*E^2*(1 + 80*E + 144*E^2 + 1152*E^3 + 1728*E^4))/(3*E + 6*E*x^2 - x^3)
 - (16*2^(5/6)*E*Sqrt[-3/(16*E^2 - 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) - 2^(1/3)*(E*(3 + 16*
E^2 + Sqrt[9 + 96*E^2]))^(2/3))]*(3456*E^(14/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3) + 5184*E^(17/3)*(3 + 16*
E^2 + Sqrt[9 + 96*E^2])^(2/3) - 72*E^(8/3)*(1 + Sqrt[9 + 96*E^2])*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3) - 3*E^
(5/3)*(3 + Sqrt[9 + 96*E^2])*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3) + 6912*E^(16/3)*(2*(3 + 16*E^2 + Sqrt[9 + 9
6*E^2]))^(1/3) + 10368*E^(19/3)*(2*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 20*E^(4/3)*(3 + Sqrt[9 + 96*E^2])*
(2*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 42*E^(7/3)*(3 + Sqrt[9 + 96*E^2])*(2*(3 + 16*E^2 + Sqrt[9 + 96*E^2
]))^(1/3) - (3 + Sqrt[9 + 96*E^2])*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 288*E^(10/3)*(2*(3 + 16*E^2 + S
qrt[9 + 96*E^2]))^(1/3)*(7 + 2*Sqrt[9 + 96*E^2]) - 36*E^(11/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3)*(1 + 3*Sq
rt[9 + 96*E^2]) + 288*E^(13/3)*(2*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(11 + 3*Sqrt[9 + 96*E^2]))*ArcTan[(2^
(1/3)*((8*E^(5/3))/(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + (2*E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)) - 4*(2
*E - x))/Sqrt[6*(-16*E^2 + 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sq
rt[9 + 96*E^2]))^(2/3))]])/((3 + 16*E^2 + Sqrt[9 + 96*E^2])*(8*E^2 + 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*
E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3))) - (768*E^2*Sqrt[-6/(16*E^2 - 32*E^(10/3)*(2
/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) - 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3))]*(14155776*2^(1/3
)*E^11 + 21233664*2^(1/3)*E^12 + 540*2^(1/3)*E*(3 + Sqrt[9 + 96*E^2]) + 1134*2^(1/3)*E^2*(3 + Sqrt[9 + 96*E^2]
) + 7077888*E^(31/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 10616832*E^(34/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])
^(1/3) - 81*E^(4/3)*(3 + Sqrt[9 + 96*E^2])*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) - 27*(3 + Sqrt[9 + 96*E^2])*(
E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 368640*E^(25/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(11 + 2*Sqrt[
9 + 96*E^2]) + 737280*2^(1/3)*E^9*(41 + 4*Sqrt[9 + 96*E^2]) - 72*E^(7/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)
*(81 + 25*Sqrt[9 + 96*E^2]) - 108*E^(10/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(99 + 29*Sqrt[9 + 96*E^2]) +
36864*E^(28/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(169 + 30*Sqrt[9 + 96*E^2]) - 576*E^(16/3)*(3 + 16*E^2 +
Sqrt[9 + 96*E^2])^(1/3)*(174 + 31*Sqrt[9 + 96*E^2]) + 73728*2^(1/3)*E^10*(619 + 60*Sqrt[9 + 96*E^2]) - 192*E^(
13/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(345 + 67*Sqrt[9 + 96*E^2]) + 432*2^(1/3)*E^4*(369 + 109*Sqrt[9 +
96*E^2]) + 14336*2^(1/3)*E^7*(795 + 143*Sqrt[9 + 96*E^2]) + 144*2^(1/3)*E^3*(621 + 187*Sqrt[9 + 96*E^2]) + 512
*E^(19/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(345 + 203*Sqrt[9 + 96*E^2]) + 768*E^(22/3)*(3 + 16*E^2 + Sqrt
[9 + 96*E^2])^(1/3)*(447 + 223*Sqrt[9 + 96*E^2]) + 384*2^(1/3)*E^5*(4125 + 1021*Sqrt[9 + 96*E^2]) + 3072*2^(1/
3)*E^8*(5766 + 1021*Sqrt[9 + 96*E^2]) + 576*2^(1/3)*E^6*(4497 + 1091*Sqrt[9 + 96*E^2]))*ArcTan[(2^(1/3)*((8*E^
(5/3))/(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + (2*E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)) - 4*(2*E - x))/Sqr
t[6*(-16*E^2 + 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^
2]))^(2/3))]])/((3 + 16*E^2 + Sqrt[9 + 96*E^2])^(4/3)*(3*(3 + Sqrt[9 + 96*E^2]) + 16*E^2*(6 + Sqrt[9 + 96*E^2]
))*(8*E^(4/3) - 2^(1/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3))*(8*E^2 + 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 +
96*E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3))^2) + (16*E*(40*E + 84*E^2 + 1152*E^3 + 17
28*E^4 + 8*E^(5/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 24*E^(8/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^
(1/3) + 576*E^(11/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 864*E^(14/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2
]))^(1/3) + 3*2^(2/3)*E^(4/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 72*2^(2/3)*E^(7/3)*(3 + 16*E^2 + Sqrt[9
+ 96*E^2])^(1/3) + 108*2^(2/3)*E^(10/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 2^(2/3)*(E*(3 + 16*E^2 + Sqrt[
9 + 96*E^2]))^(1/3))*Log[E^(1/3)*(8*2^(1/3)*E^(4/3) + 4*E^(2/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + (2*(3
+ 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)) - 2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*x])/(8*E^2 + 32*E^(10/3)*(2/(3
+ 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)) - (768*E^(10/3)*(4718
592*E^(26/3) + 7077888*E^(29/3) + 360*E^(2/3)*(3 + Sqrt[9 + 96*E^2]) + 756*E^(5/3)*(3 + Sqrt[9 + 96*E^2]) + 23
59296*E^(28/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 3538944*E^(31/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2])
)^(1/3) + 72*E^(4/3)*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 216*E^(7/3)*(3 + Sqrt[
9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 4718592*E^10*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3
) + 7077888*E^11*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 77568*E^4*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 +
 Sqrt[9 + 96*E^2]))^(2/3) + 123840*E^5*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 9*2^
(2/3)*(3 + Sqrt[9 + 96*E^2])*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 27*2^(2/3)*E*(3 + Sqrt[9 + 96*E^2])*(3 +
16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 576*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(35 + 11*Sqrt[9 + 96
*E^2]) + 72*2^(2/3)*E^2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(35 + 11*Sqrt[9 + 96*E^2]) + 864*E^(13/3)*(2/(3
+ 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(43 + 13*Sqrt[9 + 96*E^2]) + 108*2^(2/3)*E^3*(3 + 16*E^2 + Sqrt[9 + 96*E^2
])^(1/3)*(43 + 13*Sqrt[9 + 96*E^2]) + 1152*E^(8/3)*(47 + 14*Sqrt[9 + 96*E^2]) + 1728*E^(11/3)*(55 + 16*Sqrt[9
+ 96*E^2]) + 8192*E^(22/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(247 + 36*Sqrt[9 + 96*E^2]) + 12288*E^(25
/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(251 + 36*Sqrt[9 + 96*E^2]) + 16384*E^(20/3)*(253 + 36*Sqrt[9 +
96*E^2]) + 24576*E^(23/3)*(257 + 36*Sqrt[9 + 96*E^2]) + 16384*E^8*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)*(5
17 + 54*Sqrt[9 + 96*E^2]) + 24576*E^9*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)*(521 + 54*Sqrt[9 + 96*E^2]) +
1024*E^(16/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(351 + 85*Sqrt[9 + 96*E^2]) + 1536*E^(19/3)*(2/(3 + 16
*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(378 + 89*Sqrt[9 + 96*E^2]) + 3072*E^6*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/
3)*(929 + 175*Sqrt[9 + 96*E^2]) + 4608*E^7*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)*(967 + 179*Sqrt[9 + 96*E^
2]) + 1024*E^(14/3)*(783 + 182*Sqrt[9 + 96*E^2]) + 1536*E^(17/3)*(837 + 190*Sqrt[9 + 96*E^2]))*Log[E^(1/3)*(8*
2^(1/3)*E^(4/3) + 4*E^(2/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + (2*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3))
 - 2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*x])/((3 + 16*E^2 + Sqrt[9 + 96*E^2])*((32*2^(2/3)*E^(10/3))/(3 + 16
*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 8*E^2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 2^(1/3)*E^(2/3)*(3 + 16*E^2 + S
qrt[9 + 96*E^2]))*(32*2^(2/3)*E^(10/3) - 16*E^2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3) + 2^(1/3)*E^(2/3)*(3 + 1
6*E^2 + Sqrt[9 + 96*E^2])^(4/3))*(8*E^2 + 32*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*(E*(
3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3))^2) - (8*E*(40*E + 84*E^2 + 1152*E^3 + 1728*E^4 + 8*E^(5/3)*(2/(3 + 16*E
^2 + Sqrt[9 + 96*E^2]))^(1/3) + 24*E^(8/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 576*E^(11/3)*(2/(3 + 16
*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 864*E^(14/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 1728*E^(16/3)*(2/(3
 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 108*E^(10/3)*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))
^(2/3) + 3*2^(2/3)*E^(4/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 72*2^(2/3)*E^(7/3)*(3 + 16*E^2 + Sqrt[9 + 9
6*E^2])^(1/3) + 2^(2/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3))*Log[2^(1/3)*E^(2/3)*(3 + Sqrt[9 + 96*E^2])*
(2*2^(1/3)*E^(2/3) - (3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)) - 3*2^(2/3)*E^(1/3)*x - 16*2^(2/3)*E^(7/3)*x - 2^(
2/3)*E^(1/3)*Sqrt[3*(3 + 32*E^2)]*x + 8*E*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3)*x - 8*E^(5/3)*(2*(3 + 16*E^2 +
 Sqrt[9 + 96*E^2]))^(1/3)*x - 2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3)*x^2])/(8*E^2 + 32*E^(10/3)*(2/(3 + 16*E^
2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)) + (384*E^(10/3)*(4718592*E^(
26/3) + 7077888*E^(29/3) + 360*E^(2/3)*(3 + Sqrt[9 + 96*E^2]) + 756*E^(5/3)*(3 + Sqrt[9 + 96*E^2]) + 2359296*E
^(28/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 3538944*E^(31/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)
 + 72*E^(4/3)*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 216*E^(7/3)*(3 + Sqrt[9 + 96*
E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3) + 4718592*E^10*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 707
7888*E^11*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 8856*E^3*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9
+ 96*E^2]))^(2/3) + 77568*E^4*(3 + Sqrt[9 + 96*E^2])*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 9*2^(2/3)*(3
+ Sqrt[9 + 96*E^2])*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 27*2^(2/3)*E*(3 + Sqrt[9 + 96*E^2])*(3 + 16*E^2 +
Sqrt[9 + 96*E^2])^(1/3) + 576*E^(10/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(35 + 11*Sqrt[9 + 96*E^2]) +
72*2^(2/3)*E^2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)*(35 + 11*Sqrt[9 + 96*E^2]) + 864*E^(13/3)*(2/(3 + 16*E^2
+ Sqrt[9 + 96*E^2]))^(1/3)*(43 + 13*Sqrt[9 + 96*E^2]) + 1152*E^(8/3)*(47 + 14*Sqrt[9 + 96*E^2]) + 1728*E^(11/3
)*(55 + 16*Sqrt[9 + 96*E^2]) + 8192*E^(22/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(247 + 36*Sqrt[9 + 96*E
^2]) + 12288*E^(25/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(251 + 36*Sqrt[9 + 96*E^2]) + 16384*E^(20/3)*(
253 + 36*Sqrt[9 + 96*E^2]) + 24576*E^(23/3)*(257 + 36*Sqrt[9 + 96*E^2]) + 16384*E^8*(2/(3 + 16*E^2 + Sqrt[9 +
96*E^2]))^(2/3)*(517 + 54*Sqrt[9 + 96*E^2]) + 24576*E^9*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)*(521 + 54*Sq
rt[9 + 96*E^2]) + 1024*E^(16/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(351 + 85*Sqrt[9 + 96*E^2]) + 1536*E
^(19/3)*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*(378 + 89*Sqrt[9 + 96*E^2]) + 1152*E^5*(2/(3 + 16*E^2 + Sqrt
[9 + 96*E^2]))^(2/3)*(504 + 127*Sqrt[9 + 96*E^2]) + 3072*E^6*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)*(929 +
175*Sqrt[9 + 96*E^2]) + 4608*E^7*(2/(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3)*(967 + 179*Sqrt[9 + 96*E^2]) + 1024
*E^(14/3)*(783 + 182*Sqrt[9 + 96*E^2]) + 1536*E^(17/3)*(837 + 190*Sqrt[9 + 96*E^2]))*Log[2^(1/3)*E^(2/3)*(3 +
Sqrt[9 + 96*E^2])*(2*2^(1/3)*E^(2/3) - (3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3)) - 3*2^(2/3)*E^(1/3)*x - 16*2^(2/
3)*E^(7/3)*x - 2^(2/3)*E^(1/3)*Sqrt[3*(3 + 32*E^2)]*x + 8*E*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3)*x - 8*E^(5/3
)*(2*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(1/3)*x - 2*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(2/3)*x^2])/((3 + 16*E^2 + S
qrt[9 + 96*E^2])*((32*2^(2/3)*E^(10/3))/(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(1/3) + 8*E^2*(3 + 16*E^2 + Sqrt[9 + 9
6*E^2])^(1/3) + 2^(1/3)*E^(2/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))*(32*2^(2/3)*E^(10/3) - 16*E^2*(3 + 16*E^2 + S
qrt[9 + 96*E^2])^(2/3) + 2^(1/3)*E^(2/3)*(3 + 16*E^2 + Sqrt[9 + 96*E^2])^(4/3))*(8*E^2 + 32*E^(10/3)*(2/(3 + 1
6*E^2 + Sqrt[9 + 96*E^2]))^(2/3) + 2^(1/3)*(E*(3 + 16*E^2 + Sqrt[9 + 96*E^2]))^(2/3))^2)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 2099

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rule 2104

Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + S
qrt[3]*d*Sqrt[4*b^3*d + 27*a^2*d^2], 3]}, Dist[1/d^(2*p), Int[(e + f*x)^m*Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/
3) + d*x, x]^p*Simp[b*(d/3) + 12^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r
/18^(1/3))*x + d^2*x^2, x]^p, x], x]] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && ILtQ[p, 0
]

Rule 2106

Int[(P3_)^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> With[{a = Coeff[P3, x, 0], b = Coeff[P3, x, 1], c = C
oeff[P3, x, 2], d = Coeff[P3, x, 3]}, Subst[Int[((3*d*e - c*f)/(3*d) + f*x)^m*Simp[(2*c^3 - 9*b*c*d + 27*a*d^2
)/(27*d^2) - (c^2 - 3*b*d)*(x/(3*d)) + d*x^3, x]^p, x], x, x + c/(3*d)] /; NeQ[c, 0]] /; FreeQ[{e, f, m, p}, x
] && PolyQ[P3, x, 3]

Rule 2126

Int[(Pm_)*(Qn_)^(p_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*(Qn^(p + 1)
/(n*(p + 1)*Coeff[Qn, x, n])), x] + Dist[1/(n*Coeff[Qn, x, n]), Int[ExpandToSum[n*Coeff[Qn, x, n]*Pm - Coeff[P
m, x, m]*D[Qn, x], x]*Qn^p, x], x] /; EqQ[m, n - 1]] /; FreeQ[p, x] && PolyQ[Pm, x] && PolyQ[Qn, x] && NeQ[p,
-1]

Rubi steps \begin{align*} \text {integral}& = \int \left (-48 e (2+3 e)-16 (2+3 e) x-12 x^2+16 x^3+\frac {108 e^2 \left (4 e \left (8+15 e+144 e^2+216 e^3\right )+4 \left (1+2 e+24 e^2+36 e^3\right ) x+\left (1+80 e+144 e^2+1152 e^3+1728 e^4\right ) x^2\right )}{\left (3 e+6 e x^2-x^3\right )^2}+\frac {48 e \left (-18 e \left (1+2 e+24 e^2+36 e^3\right )-\left (1+3 e+72 e^2+108 e^3\right ) x\right )}{3 e+6 e x^2-x^3}\right ) \, dx \\ & = -48 e (2+3 e) x-8 (2+3 e) x^2-4 x^3+4 x^4+(48 e) \int \frac {-18 e \left (1+2 e+24 e^2+36 e^3\right )-\left (1+3 e+72 e^2+108 e^3\right ) x}{3 e+6 e x^2-x^3} \, dx+\left (108 e^2\right ) \int \frac {4 e \left (8+15 e+144 e^2+216 e^3\right )+4 \left (1+2 e+24 e^2+36 e^3\right ) x+\left (1+80 e+144 e^2+1152 e^3+1728 e^4\right ) x^2}{\left (3 e+6 e x^2-x^3\right )^2} \, dx \\ & = -48 e (2+3 e) x-8 (2+3 e) x^2-4 x^3+4 x^4+\frac {36 e^2 \left (1+80 e+144 e^2+1152 e^3+1728 e^4\right )}{3 e+6 e x^2-x^3}+(48 e) \text {Subst}\left (\int \frac {\frac {1}{3} \left (6 e \left (-1-3 e-72 e^2-108 e^3\right )-54 e \left (1+2 e+24 e^2+36 e^3\right )\right )+\left (-1-3 e-72 e^2-108 e^3\right ) x}{e \left (3+16 e^2\right )+12 e^2 x-x^3} \, dx,x,-2 e+x\right )-\left (36 e^2\right ) \int \frac {-12 e \left (8+15 e+144 e^2+216 e^3\right )-12 \left (1+3 e+104 e^2+180 e^3+1152 e^4+1728 e^5\right ) x}{\left (3 e+6 e x^2-x^3\right )^2} \, dx \\ & = -48 e (2+3 e) x-8 (2+3 e) x^2-4 x^3+4 x^4+\frac {36 e^2 \left (1+80 e+144 e^2+1152 e^3+1728 e^4\right )}{3 e+6 e x^2-x^3}+(48 e) \text {Subst}\left (\int \frac {\frac {1}{3} \left (6 e \left (-1-3 e-72 e^2-108 e^3\right )-54 e \left (1+2 e+24 e^2+36 e^3\right )\right )+\left (-1-3 e-72 e^2-108 e^3\right ) x}{\left (4 e^{5/3} \sqrt [3]{\frac {2}{3+16 e^2+\sqrt {9+96 e^2}}}+\sqrt [3]{\frac {1}{2} e \left (3+16 e^2+\sqrt {9+96 e^2}\right )}-x\right ) \left (-4 e^2+16 e^{10/3} \left (\frac {2}{3+16 e^2+\sqrt {9+96 e^2}}\right )^{2/3}+\left (\frac {1}{2} e \left (3+16 e^2+\sqrt {9+96 e^2}\right )\right )^{2/3}+\frac {\left (\frac {8 e^{5/3}}{\sqrt [3]{3+16 e^2+\sqrt {9+96 e^2}}}+\sqrt [3]{2 e \left (3+16 e^2+\sqrt {9+96 e^2}\right )}\right ) x}{2^{2/3}}+x^2\right )} \, dx,x,-2 e+x\right )-\left (36 e^2\right ) \text {Subst}\left (\int \frac {\frac {1}{3} \left (-36 e \left (8+15 e+144 e^2+216 e^3\right )-72 e \left (1+3 e+104 e^2+180 e^3+1152 e^4+1728 e^5\right )\right )-12 \left (1+3 e+104 e^2+180 e^3+1152 e^4+1728 e^5\right ) x}{\left (e \left (3+16 e^2\right )+12 e^2 x-x^3\right )^2} \, dx,x,-2 e+x\right ) \\ & = \text {Too large to display} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(89\) vs. \(2(26)=52\).

Time = 0.06 (sec) , antiderivative size = 89, normalized size of antiderivative = 3.42 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=\frac {4 \left (x^5 \left (4+x-x^2\right )+648 e^4 \left (1+2 x^2\right )+e^2 \left (9+18 x^2-144 x^3\right )-216 e^3 \left (-2-4 x^2+x^3\right )+3 e x^3 \left (-1+x+2 x^3\right )\right )}{-x^3+e \left (3+6 x^2\right )} \]

[In]

Integrate[(-32*x^7 - 12*x^8 + 16*x^9 + E^2*(144*x^3 + 576*x^5 + 576*x^7) + E*(240*x^4 + 72*x^5 + 192*x^6 + 96*
x^7 - 192*x^8))/(x^6 + E^2*(9 + 36*x^2 + 36*x^4) + E*(-6*x^3 - 12*x^5)),x]

[Out]

(4*(x^5*(4 + x - x^2) + 648*E^4*(1 + 2*x^2) + E^2*(9 + 18*x^2 - 144*x^3) - 216*E^3*(-2 - 4*x^2 + x^3) + 3*E*x^
3*(-1 + x + 2*x^3)))/(-x^3 + E*(3 + 6*x^2))

Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.85

method result size
gosper \(\frac {4 x^{4} \left (6 x^{2} {\mathrm e}-x^{3}+x^{2}+3 \,{\mathrm e}+4 x \right )}{6 x^{2} {\mathrm e}-x^{3}+3 \,{\mathrm e}}\) \(48\)
norman \(\frac {\left (4+24 \,{\mathrm e}\right ) x^{6}+16 x^{5}-4 x^{7}+12 x^{4} {\mathrm e}}{6 x^{2} {\mathrm e}-x^{3}+3 \,{\mathrm e}}\) \(49\)
parallelrisch \(\frac {24 x^{6} {\mathrm e}-4 x^{7}+4 x^{6}+12 x^{4} {\mathrm e}+16 x^{5}}{6 x^{2} {\mathrm e}-x^{3}+3 \,{\mathrm e}}\) \(51\)
risch \(-\frac {4 \left (-6 x^{6} {\mathrm e}+x^{7}-x^{6}+216 x^{3} {\mathrm e}^{3}+144 x^{3} {\mathrm e}^{2}-3 x^{4} {\mathrm e}-4 x^{5}-18 x^{2} {\mathrm e}^{2}+3 x^{3} {\mathrm e}-1296 x^{2} {\mathrm e}^{4}-864 x^{2} {\mathrm e}^{3}-9 \,{\mathrm e}^{2}-648 \,{\mathrm e}^{4}-432 \,{\mathrm e}^{3}\right )}{6 x^{2} {\mathrm e}-x^{3}+3 \,{\mathrm e}}\) \(104\)
default \(4 x^{4}-144 \,{\mathrm e}^{2} x -24 x^{2} {\mathrm e}-4 x^{3}-96 x \,{\mathrm e}-16 x^{2}+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (36 \textit {\_Z}^{4} {\mathrm e}^{2}-12 \textit {\_Z}^{5} {\mathrm e}+\textit {\_Z}^{6}+36 \textit {\_Z}^{2} {\mathrm e}^{2}-6 \textit {\_Z}^{3} {\mathrm e}+9 \,{\mathrm e}^{2}\right )}{\sum }\frac {\left (4 \left (108 \,{\mathrm e}^{4}+72 \,{\mathrm e}^{3}+3 \,{\mathrm e}^{2}+{\mathrm e}\right ) \textit {\_R}^{4}+24 \left (3 \,{\mathrm e}^{3}+2 \,{\mathrm e}^{2}\right ) \textit {\_R}^{3}+9 \left (48 \,{\mathrm e}^{4}+32 \,{\mathrm e}^{3}+{\mathrm e}^{2}\right ) \textit {\_R}^{2}+12 \,{\mathrm e}^{2} \left (3 \,{\mathrm e}+2\right ) \textit {\_R} +108 \,{\mathrm e}^{4}+72 \,{\mathrm e} \,{\mathrm e}^{2}\right ) \ln \left (x -\textit {\_R} \right )}{24 \textit {\_R}^{3} {\mathrm e}^{2}-10 \textit {\_R}^{4} {\mathrm e}+\textit {\_R}^{5}+12 \,{\mathrm e}^{2} \textit {\_R} -3 \textit {\_R}^{2} {\mathrm e}}\right )\) \(196\)

[In]

int(((576*x^7+576*x^5+144*x^3)*exp(1)^2+(-192*x^8+96*x^7+192*x^6+72*x^5+240*x^4)*exp(1)+16*x^9-12*x^8-32*x^7)/
((36*x^4+36*x^2+9)*exp(1)^2+(-12*x^5-6*x^3)*exp(1)+x^6),x,method=_RETURNVERBOSE)

[Out]

4*x^4*(6*x^2*exp(1)-x^3+x^2+3*exp(1)+4*x)/(6*x^2*exp(1)-x^3+3*exp(1))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 92 vs. \(2 (26) = 52\).

Time = 0.26 (sec) , antiderivative size = 92, normalized size of antiderivative = 3.54 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=\frac {4 \, {\left (x^{7} - x^{6} - 4 \, x^{5} - 648 \, {\left (2 \, x^{2} + 1\right )} e^{4} + 216 \, {\left (x^{3} - 4 \, x^{2} - 2\right )} e^{3} + 9 \, {\left (16 \, x^{3} - 2 \, x^{2} - 1\right )} e^{2} - 3 \, {\left (2 \, x^{6} + x^{4} - x^{3}\right )} e\right )}}{x^{3} - 3 \, {\left (2 \, x^{2} + 1\right )} e} \]

[In]

integrate(((576*x^7+576*x^5+144*x^3)*exp(1)^2+(-192*x^8+96*x^7+192*x^6+72*x^5+240*x^4)*exp(1)+16*x^9-12*x^8-32
*x^7)/((36*x^4+36*x^2+9)*exp(1)^2+(-12*x^5-6*x^3)*exp(1)+x^6),x, algorithm="fricas")

[Out]

4*(x^7 - x^6 - 4*x^5 - 648*(2*x^2 + 1)*e^4 + 216*(x^3 - 4*x^2 - 2)*e^3 + 9*(16*x^3 - 2*x^2 - 1)*e^2 - 3*(2*x^6
 + x^4 - x^3)*e)/(x^3 - 3*(2*x^2 + 1)*e)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 105 vs. \(2 (22) = 44\).

Time = 1.31 (sec) , antiderivative size = 105, normalized size of antiderivative = 4.04 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=4 x^{4} - 4 x^{3} + x^{2} \left (- 24 e - 16\right ) + x \left (- 144 e^{2} - 96 e\right ) + \frac {x^{2} \left (- 5184 e^{4} - 3456 e^{3} - 144 e^{2} - 48 e\right ) + x \left (- 432 e^{3} - 288 e^{2}\right ) - 2592 e^{4} - 1728 e^{3} - 36 e^{2}}{x^{3} - 6 e x^{2} - 3 e} \]

[In]

integrate(((576*x**7+576*x**5+144*x**3)*exp(1)**2+(-192*x**8+96*x**7+192*x**6+72*x**5+240*x**4)*exp(1)+16*x**9
-12*x**8-32*x**7)/((36*x**4+36*x**2+9)*exp(1)**2+(-12*x**5-6*x**3)*exp(1)+x**6),x)

[Out]

4*x**4 - 4*x**3 + x**2*(-24*E - 16) + x*(-144*exp(2) - 96*E) + (x**2*(-5184*exp(4) - 3456*exp(3) - 144*exp(2)
- 48*E) + x*(-432*exp(3) - 288*exp(2)) - 2592*exp(4) - 1728*exp(3) - 36*exp(2))/(x**3 - 6*E*x**2 - 3*E)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 98 vs. \(2 (26) = 52\).

Time = 0.18 (sec) , antiderivative size = 98, normalized size of antiderivative = 3.77 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=4 \, x^{4} - 4 \, x^{3} - 8 \, x^{2} {\left (3 \, e + 2\right )} - 48 \, x {\left (3 \, e^{2} + 2 \, e\right )} - \frac {12 \, {\left (4 \, x^{2} {\left (108 \, e^{4} + 72 \, e^{3} + 3 \, e^{2} + e\right )} + 12 \, x {\left (3 \, e^{3} + 2 \, e^{2}\right )} + 216 \, e^{4} + 144 \, e^{3} + 3 \, e^{2}\right )}}{x^{3} - 6 \, x^{2} e - 3 \, e} \]

[In]

integrate(((576*x^7+576*x^5+144*x^3)*exp(1)^2+(-192*x^8+96*x^7+192*x^6+72*x^5+240*x^4)*exp(1)+16*x^9-12*x^8-32
*x^7)/((36*x^4+36*x^2+9)*exp(1)^2+(-12*x^5-6*x^3)*exp(1)+x^6),x, algorithm="maxima")

[Out]

4*x^4 - 4*x^3 - 8*x^2*(3*e + 2) - 48*x*(3*e^2 + 2*e) - 12*(4*x^2*(108*e^4 + 72*e^3 + 3*e^2 + e) + 12*x*(3*e^3
+ 2*e^2) + 216*e^4 + 144*e^3 + 3*e^2)/(x^3 - 6*x^2*e - 3*e)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 103 vs. \(2 (26) = 52\).

Time = 0.26 (sec) , antiderivative size = 103, normalized size of antiderivative = 3.96 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=4 \, x^{4} - 4 \, x^{3} - 24 \, x^{2} e - 16 \, x^{2} - 144 \, x e^{2} - 96 \, x e - \frac {12 \, {\left (432 \, x^{2} e^{4} + 288 \, x^{2} e^{3} + 12 \, x^{2} e^{2} + 4 \, x^{2} e + 36 \, x e^{3} + 24 \, x e^{2} + 216 \, e^{4} + 144 \, e^{3} + 3 \, e^{2}\right )}}{x^{3} - 6 \, x^{2} e - 3 \, e} \]

[In]

integrate(((576*x^7+576*x^5+144*x^3)*exp(1)^2+(-192*x^8+96*x^7+192*x^6+72*x^5+240*x^4)*exp(1)+16*x^9-12*x^8-32
*x^7)/((36*x^4+36*x^2+9)*exp(1)^2+(-12*x^5-6*x^3)*exp(1)+x^6),x, algorithm="giac")

[Out]

4*x^4 - 4*x^3 - 24*x^2*e - 16*x^2 - 144*x*e^2 - 96*x*e - 12*(432*x^2*e^4 + 288*x^2*e^3 + 12*x^2*e^2 + 4*x^2*e
+ 36*x*e^3 + 24*x*e^2 + 216*e^4 + 144*e^3 + 3*e^2)/(x^3 - 6*x^2*e - 3*e)

Mupad [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 108, normalized size of antiderivative = 4.15 \[ \int \frac {-32 x^7-12 x^8+16 x^9+e^2 \left (144 x^3+576 x^5+576 x^7\right )+e \left (240 x^4+72 x^5+192 x^6+96 x^7-192 x^8\right )}{x^6+e^2 \left (9+36 x^2+36 x^4\right )+e \left (-6 x^3-12 x^5\right )} \, dx=x\,\left (288\,\mathrm {e}+432\,{\mathrm {e}}^2-12\,\mathrm {e}\,\left (48\,\mathrm {e}+32\right )\right )-x^2\,\left (24\,\mathrm {e}+16\right )+\frac {\left (48\,\mathrm {e}+144\,{\mathrm {e}}^2+3456\,{\mathrm {e}}^3+5184\,{\mathrm {e}}^4\right )\,x^2+\left (288\,{\mathrm {e}}^2+432\,{\mathrm {e}}^3\right )\,x+36\,{\mathrm {e}}^2+1728\,{\mathrm {e}}^3+2592\,{\mathrm {e}}^4}{-x^3+6\,\mathrm {e}\,x^2+3\,\mathrm {e}}-4\,x^3+4\,x^4 \]

[In]

int((exp(1)*(240*x^4 + 72*x^5 + 192*x^6 + 96*x^7 - 192*x^8) + exp(2)*(144*x^3 + 576*x^5 + 576*x^7) - 32*x^7 -
12*x^8 + 16*x^9)/(exp(2)*(36*x^2 + 36*x^4 + 9) - exp(1)*(6*x^3 + 12*x^5) + x^6),x)

[Out]

x*(288*exp(1) + 432*exp(2) - 12*exp(1)*(48*exp(1) + 32)) - x^2*(24*exp(1) + 16) + (36*exp(2) + 1728*exp(3) + 2
592*exp(4) + x^2*(48*exp(1) + 144*exp(2) + 3456*exp(3) + 5184*exp(4)) + x*(288*exp(2) + 432*exp(3)))/(3*exp(1)
 + 6*x^2*exp(1) - x^3) - 4*x^3 + 4*x^4