\(\int \frac {e^{-21+4 x} (4-22 x+8 x^2)}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx\) [3017]

   Optimal result
   Rubi [B] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 41, antiderivative size = 23 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2 e^{-21+4 x} x}{25 (-x+(-1+x) x)^2} \]

[Out]

2/25*x/exp(-x+21/4)^4/(x*(-1+x)-x)^2

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(51\) vs. \(2(23)=46\).

Time = 0.32 (sec) , antiderivative size = 51, normalized size of antiderivative = 2.22, number of steps used = 13, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {6820, 12, 6874, 2209, 2208} \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {e^{4 x-21}}{50 x}+\frac {e^{4 x-21}}{50 (2-x)}+\frac {e^{4 x-21}}{25 (2-x)^2} \]

[In]

Int[(E^(-21 + 4*x)*(4 - 22*x + 8*x^2))/(-200*x^2 + 300*x^3 - 150*x^4 + 25*x^5),x]

[Out]

E^(-21 + 4*x)/(25*(2 - x)^2) + E^(-21 + 4*x)/(50*(2 - x)) + E^(-21 + 4*x)/(50*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2208

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*((b*F^(g*(e + f*x)))^n/(d*(m + 1))), x] - Dist[f*g*n*(Log[F]/(d*(m + 1))), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !TrueQ[$UseGamm
a]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {2 e^{-21+4 x} \left (-2+11 x-4 x^2\right )}{25 (2-x)^3 x^2} \, dx \\ & = \frac {2}{25} \int \frac {e^{-21+4 x} \left (-2+11 x-4 x^2\right )}{(2-x)^3 x^2} \, dx \\ & = \frac {2}{25} \int \left (\frac {e^{-21+4 x}}{2-x}-\frac {e^{-21+4 x}}{(-2+x)^3}+\frac {9 e^{-21+4 x}}{4 (-2+x)^2}-\frac {e^{-21+4 x}}{4 x^2}+\frac {e^{-21+4 x}}{x}\right ) \, dx \\ & = -\left (\frac {1}{50} \int \frac {e^{-21+4 x}}{x^2} \, dx\right )+\frac {2}{25} \int \frac {e^{-21+4 x}}{2-x} \, dx-\frac {2}{25} \int \frac {e^{-21+4 x}}{(-2+x)^3} \, dx+\frac {2}{25} \int \frac {e^{-21+4 x}}{x} \, dx+\frac {9}{50} \int \frac {e^{-21+4 x}}{(-2+x)^2} \, dx \\ & = \frac {e^{-21+4 x}}{25 (2-x)^2}+\frac {9 e^{-21+4 x}}{50 (2-x)}+\frac {e^{-21+4 x}}{50 x}-\frac {2 \text {Ei}(-4 (2-x))}{25 e^{13}}+\frac {2 \text {Ei}(4 x)}{25 e^{21}}-\frac {2}{25} \int \frac {e^{-21+4 x}}{x} \, dx-\frac {4}{25} \int \frac {e^{-21+4 x}}{(-2+x)^2} \, dx+\frac {18}{25} \int \frac {e^{-21+4 x}}{-2+x} \, dx \\ & = \frac {e^{-21+4 x}}{25 (2-x)^2}+\frac {e^{-21+4 x}}{50 (2-x)}+\frac {e^{-21+4 x}}{50 x}+\frac {16 \text {Ei}(-4 (2-x))}{25 e^{13}}-\frac {16}{25} \int \frac {e^{-21+4 x}}{-2+x} \, dx \\ & = \frac {e^{-21+4 x}}{25 (2-x)^2}+\frac {e^{-21+4 x}}{50 (2-x)}+\frac {e^{-21+4 x}}{50 x} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.83 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2 e^{-21+4 x}}{25 (-2+x)^2 x} \]

[In]

Integrate[(E^(-21 + 4*x)*(4 - 22*x + 8*x^2))/(-200*x^2 + 300*x^3 - 150*x^4 + 25*x^5),x]

[Out]

(2*E^(-21 + 4*x))/(25*(-2 + x)^2*x)

Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.74

method result size
risch \(\frac {2 \,{\mathrm e}^{4 x -21}}{25 x \left (-2+x \right )^{2}}\) \(17\)
norman \(\frac {2 \,{\mathrm e}^{4 x -21}}{25 x \left (-2+x \right )^{2}}\) \(19\)
gosper \(\frac {2 \,{\mathrm e}^{4 x -21}}{25 x \left (x^{2}-4 x +4\right )}\) \(24\)
parallelrisch \(\frac {2 \,{\mathrm e}^{4 x -21}}{25 x \left (x^{2}-4 x +4\right )}\) \(24\)
derivativedivides \(\frac {109 \,{\mathrm e}^{4 x -21} \left (16 \left (-x +\frac {21}{4}\right )^{2}+184 x -505\right )}{50 \left (64 \left (-x +\frac {21}{4}\right )^{3}-752 \left (-x +\frac {21}{4}\right )^{2}-2860 x +11466\right )}+\frac {31 \,{\mathrm e}^{4 x -21} \left (48 \left (-x +\frac {21}{4}\right )^{2}-472 x +21\right )}{100 \left (64 \left (-x +\frac {21}{4}\right )^{3}-752 \left (-x +\frac {21}{4}\right )^{2}-2860 x +11466\right )}-\frac {{\mathrm e}^{4 x -21} \left (4976 \left (-x +\frac {21}{4}\right )^{2}+25480 x -108927\right )}{100 \left (64 \left (-x +\frac {21}{4}\right )^{3}-752 \left (-x +\frac {21}{4}\right )^{2}-2860 x +11466\right )}\) \(143\)
default \(\frac {109 \,{\mathrm e}^{4 x -21} \left (16 \left (-x +\frac {21}{4}\right )^{2}+184 x -505\right )}{50 \left (64 \left (-x +\frac {21}{4}\right )^{3}-752 \left (-x +\frac {21}{4}\right )^{2}-2860 x +11466\right )}+\frac {31 \,{\mathrm e}^{4 x -21} \left (48 \left (-x +\frac {21}{4}\right )^{2}-472 x +21\right )}{100 \left (64 \left (-x +\frac {21}{4}\right )^{3}-752 \left (-x +\frac {21}{4}\right )^{2}-2860 x +11466\right )}-\frac {{\mathrm e}^{4 x -21} \left (4976 \left (-x +\frac {21}{4}\right )^{2}+25480 x -108927\right )}{100 \left (64 \left (-x +\frac {21}{4}\right )^{3}-752 \left (-x +\frac {21}{4}\right )^{2}-2860 x +11466\right )}\) \(143\)

[In]

int((8*x^2-22*x+4)/(25*x^5-150*x^4+300*x^3-200*x^2)/exp(-x+21/4)^4,x,method=_RETURNVERBOSE)

[Out]

2/25/x/(-2+x)^2*exp(4*x-21)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.96 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2 \, e^{\left (4 \, x - 21\right )}}{25 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )}} \]

[In]

integrate((8*x^2-22*x+4)/(25*x^5-150*x^4+300*x^3-200*x^2)/exp(-x+21/4)^4,x, algorithm="fricas")

[Out]

2/25*e^(4*x - 21)/(x^3 - 4*x^2 + 4*x)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.87 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2 e^{4 x - 21}}{25 x^{3} - 100 x^{2} + 100 x} \]

[In]

integrate((8*x**2-22*x+4)/(25*x**5-150*x**4+300*x**3-200*x**2)/exp(-x+21/4)**4,x)

[Out]

2*exp(4*x - 21)/(25*x**3 - 100*x**2 + 100*x)

Maxima [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.17 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2 \, e^{\left (4 \, x\right )}}{25 \, {\left (x^{3} e^{21} - 4 \, x^{2} e^{21} + 4 \, x e^{21}\right )}} \]

[In]

integrate((8*x^2-22*x+4)/(25*x^5-150*x^4+300*x^3-200*x^2)/exp(-x+21/4)^4,x, algorithm="maxima")

[Out]

2/25*e^(4*x)/(x^3*e^21 - 4*x^2*e^21 + 4*x*e^21)

Giac [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.17 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2 \, e^{\left (4 \, x\right )}}{25 \, {\left (x^{3} e^{21} - 4 \, x^{2} e^{21} + 4 \, x e^{21}\right )}} \]

[In]

integrate((8*x^2-22*x+4)/(25*x^5-150*x^4+300*x^3-200*x^2)/exp(-x+21/4)^4,x, algorithm="giac")

[Out]

2/25*e^(4*x)/(x^3*e^21 - 4*x^2*e^21 + 4*x*e^21)

Mupad [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.04 \[ \int \frac {e^{-21+4 x} \left (4-22 x+8 x^2\right )}{-200 x^2+300 x^3-150 x^4+25 x^5} \, dx=\frac {2\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{-21}}{25\,\left (x^3-4\,x^2+4\,x\right )} \]

[In]

int(-(exp(4*x - 21)*(8*x^2 - 22*x + 4))/(200*x^2 - 300*x^3 + 150*x^4 - 25*x^5),x)

[Out]

(2*exp(4*x)*exp(-21))/(25*(4*x - 4*x^2 + x^3))