\(\int \frac {-131072-65536 e^4-2 x^2+(-32768-16384 e^4) \log (2)+(-3072-1536 e^4) \log ^2(2)+(-128-64 e^4) \log ^3(2)+(-2-e^4) \log ^4(2)+4 x^2 \log (x)}{(65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)) \log ^2(x)} \, dx\) [3106]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 101, antiderivative size = 21 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {2+e^4+\frac {2 x^2}{(16+\log (2))^4}}{\log (x)} \]

[Out]

(2*x^2/(16+ln(2))^4+2+exp(4))/ln(x)

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.24, number of steps used = 17, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.099, Rules used = {6, 12, 6820, 6874, 2395, 2343, 2346, 2209, 2339, 30} \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {2 x^2}{(16+\log (2))^4 \log (x)}+\frac {2+e^4}{\log (x)} \]

[In]

Int[(-131072 - 65536*E^4 - 2*x^2 + (-32768 - 16384*E^4)*Log[2] + (-3072 - 1536*E^4)*Log[2]^2 + (-128 - 64*E^4)
*Log[2]^3 + (-2 - E^4)*Log[2]^4 + 4*x^2*Log[x])/((65536*x + 16384*x*Log[2] + 1536*x*Log[2]^2 + 64*x*Log[2]^3 +
 x*Log[2]^4)*Log[x]^2),x]

[Out]

(2 + E^4)/Log[x] + (2*x^2)/((16 + Log[2])^4*Log[x])

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2339

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2343

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log
[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2346

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2395

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)+x (65536+16384 \log (2))\right ) \log ^2(x)} \, dx \\ & = \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (x \log ^4(2)+x (65536+16384 \log (2))+x \left (1536 \log ^2(2)+64 \log ^3(2)\right )\right ) \log ^2(x)} \, dx \\ & = \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (x \left (1536 \log ^2(2)+64 \log ^3(2)\right )+x \left (65536+16384 \log (2)+\log ^4(2)\right )\right ) \log ^2(x)} \, dx \\ & = \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{x \left (65536+16384 \log (2)+1536 \log ^2(2)+64 \log ^3(2)+\log ^4(2)\right ) \log ^2(x)} \, dx \\ & = \frac {\int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{x \log ^2(x)} \, dx}{(16+\log (2))^4} \\ & = \frac {\int \frac {-e^4 (16+\log (2))^4-2 \left (x^2+(16+\log (2))^4\right )+4 x^2 \log (x)}{x \log ^2(x)} \, dx}{(16+\log (2))^4} \\ & = \frac {\int \left (\frac {-131072-65536 e^4-2 x^2-32768 \log (2)-16384 e^4 \log (2)-3072 \log ^2(2)-1536 e^4 \log ^2(2)-128 \log ^3(2)-64 e^4 \log ^3(2)-2 \log ^4(2)-e^4 \log ^4(2)}{x \log ^2(x)}+\frac {4 x}{\log (x)}\right ) \, dx}{(16+\log (2))^4} \\ & = \frac {\int \frac {-131072-65536 e^4-2 x^2-32768 \log (2)-16384 e^4 \log (2)-3072 \log ^2(2)-1536 e^4 \log ^2(2)-128 \log ^3(2)-64 e^4 \log ^3(2)-2 \log ^4(2)-e^4 \log ^4(2)}{x \log ^2(x)} \, dx}{(16+\log (2))^4}+\frac {4 \int \frac {x}{\log (x)} \, dx}{(16+\log (2))^4} \\ & = \frac {\int \left (-\frac {2 x}{\log ^2(x)}+\frac {-131072-65536 e^4-32768 \log (2)-16384 e^4 \log (2)-3072 \log ^2(2)-1536 e^4 \log ^2(2)-128 \log ^3(2)-64 e^4 \log ^3(2)-2 \log ^4(2)-e^4 \log ^4(2)}{x \log ^2(x)}\right ) \, dx}{(16+\log (2))^4}+\frac {4 \text {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )}{(16+\log (2))^4} \\ & = \frac {4 \text {Ei}(2 \log (x))}{(16+\log (2))^4}+\left (-2-e^4\right ) \int \frac {1}{x \log ^2(x)} \, dx-\frac {2 \int \frac {x}{\log ^2(x)} \, dx}{(16+\log (2))^4} \\ & = \frac {4 \text {Ei}(2 \log (x))}{(16+\log (2))^4}+\frac {2 x^2}{(16+\log (2))^4 \log (x)}+\left (-2-e^4\right ) \text {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )-\frac {4 \int \frac {x}{\log (x)} \, dx}{(16+\log (2))^4} \\ & = \frac {4 \text {Ei}(2 \log (x))}{(16+\log (2))^4}+\frac {2+e^4}{\log (x)}+\frac {2 x^2}{(16+\log (2))^4 \log (x)}-\frac {4 \text {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )}{(16+\log (2))^4} \\ & = \frac {2+e^4}{\log (x)}+\frac {2 x^2}{(16+\log (2))^4 \log (x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.62 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {e^4 (16+\log (2))^4+2 \left (x^2+(16+\log (2))^4\right )}{(16+\log (2))^4 \log (x)} \]

[In]

Integrate[(-131072 - 65536*E^4 - 2*x^2 + (-32768 - 16384*E^4)*Log[2] + (-3072 - 1536*E^4)*Log[2]^2 + (-128 - 6
4*E^4)*Log[2]^3 + (-2 - E^4)*Log[2]^4 + 4*x^2*Log[x])/((65536*x + 16384*x*Log[2] + 1536*x*Log[2]^2 + 64*x*Log[
2]^3 + x*Log[2]^4)*Log[x]^2),x]

[Out]

(E^4*(16 + Log[2])^4 + 2*(x^2 + (16 + Log[2])^4))/((16 + Log[2])^4*Log[x])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(65\) vs. \(2(20)=40\).

Time = 0.19 (sec) , antiderivative size = 66, normalized size of antiderivative = 3.14

method result size
norman \(\frac {\frac {2 x^{2}}{16+\ln \left (2\right )}+8192+{\mathrm e}^{4} \ln \left (2\right )^{3}+48 \,{\mathrm e}^{4} \ln \left (2\right )^{2}+2 \ln \left (2\right )^{3}+768 \,{\mathrm e}^{4} \ln \left (2\right )+96 \ln \left (2\right )^{2}+4096 \,{\mathrm e}^{4}+1536 \ln \left (2\right )}{\left (16+\ln \left (2\right )\right )^{3} \ln \left (x \right )}\) \(66\)
risch \(\frac {{\mathrm e}^{4} \ln \left (2\right )^{4}+64 \,{\mathrm e}^{4} \ln \left (2\right )^{3}+2 \ln \left (2\right )^{4}+1536 \,{\mathrm e}^{4} \ln \left (2\right )^{2}+128 \ln \left (2\right )^{3}+16384 \,{\mathrm e}^{4} \ln \left (2\right )+3072 \ln \left (2\right )^{2}+2 x^{2}+65536 \,{\mathrm e}^{4}+32768 \ln \left (2\right )+131072}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}\) \(92\)
parallelrisch \(\frac {{\mathrm e}^{4} \ln \left (2\right )^{4}+64 \,{\mathrm e}^{4} \ln \left (2\right )^{3}+2 \ln \left (2\right )^{4}+1536 \,{\mathrm e}^{4} \ln \left (2\right )^{2}+128 \ln \left (2\right )^{3}+16384 \,{\mathrm e}^{4} \ln \left (2\right )+3072 \ln \left (2\right )^{2}+2 x^{2}+65536 \,{\mathrm e}^{4}+32768 \ln \left (2\right )+131072}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}\) \(92\)
parts \(-\frac {4 \,\operatorname {Ei}_{1}\left (-2 \ln \left (x \right )\right )}{\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536}-\frac {-\frac {{\mathrm e}^{4} \ln \left (2\right )^{4}}{\ln \left (x \right )}-\frac {64 \,{\mathrm e}^{4} \ln \left (2\right )^{3}}{\ln \left (x \right )}-\frac {2 \ln \left (2\right )^{4}}{\ln \left (x \right )}-\frac {1536 \,{\mathrm e}^{4} \ln \left (2\right )^{2}}{\ln \left (x \right )}-\frac {128 \ln \left (2\right )^{3}}{\ln \left (x \right )}-\frac {16384 \,{\mathrm e}^{4} \ln \left (2\right )}{\ln \left (x \right )}-\frac {3072 \ln \left (2\right )^{2}}{\ln \left (x \right )}-\frac {2 x^{2}}{\ln \left (x \right )}-4 \,\operatorname {Ei}_{1}\left (-2 \ln \left (x \right )\right )-\frac {65536 \,{\mathrm e}^{4}}{\ln \left (x \right )}-\frac {32768 \ln \left (2\right )}{\ln \left (x \right )}-\frac {131072}{\ln \left (x \right )}}{\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536}\) \(176\)
default \(\frac {{\mathrm e}^{4} \ln \left (2\right )^{4}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {64 \,{\mathrm e}^{4} \ln \left (2\right )^{3}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {2 \ln \left (2\right )^{4}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}-\frac {4 \,\operatorname {Ei}_{1}\left (-2 \ln \left (x \right )\right )}{\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536}+\frac {1536 \,{\mathrm e}^{4} \ln \left (2\right )^{2}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {128 \ln \left (2\right )^{3}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {16384 \,{\mathrm e}^{4} \ln \left (2\right )}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {3072 \ln \left (2\right )^{2}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}-\frac {2 \left (-\frac {x^{2}}{\ln \left (x \right )}-2 \,\operatorname {Ei}_{1}\left (-2 \ln \left (x \right )\right )\right )}{\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536}+\frac {65536 \,{\mathrm e}^{4}}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {32768 \ln \left (2\right )}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}+\frac {131072}{\left (\ln \left (2\right )^{4}+64 \ln \left (2\right )^{3}+1536 \ln \left (2\right )^{2}+16384 \ln \left (2\right )+65536\right ) \ln \left (x \right )}\) \(415\)

[In]

int((4*x^2*ln(x)+(-exp(4)-2)*ln(2)^4+(-64*exp(4)-128)*ln(2)^3+(-1536*exp(4)-3072)*ln(2)^2+(-16384*exp(4)-32768
)*ln(2)-65536*exp(4)-2*x^2-131072)/(x*ln(2)^4+64*x*ln(2)^3+1536*x*ln(2)^2+16384*x*ln(2)+65536*x)/ln(x)^2,x,met
hod=_RETURNVERBOSE)

[Out]

(2/(16+ln(2))*x^2+8192+exp(4)*ln(2)^3+48*exp(4)*ln(2)^2+2*ln(2)^3+768*exp(4)*ln(2)+96*ln(2)^2+4096*exp(4)+1536
*ln(2))/(16+ln(2))^3/ln(x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 77 vs. \(2 (20) = 40\).

Time = 0.29 (sec) , antiderivative size = 77, normalized size of antiderivative = 3.67 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {{\left (e^{4} + 2\right )} \log \left (2\right )^{4} + 64 \, {\left (e^{4} + 2\right )} \log \left (2\right )^{3} + 1536 \, {\left (e^{4} + 2\right )} \log \left (2\right )^{2} + 2 \, x^{2} + 16384 \, {\left (e^{4} + 2\right )} \log \left (2\right ) + 65536 \, e^{4} + 131072}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} \]

[In]

integrate((4*x^2*log(x)+(-exp(4)-2)*log(2)^4+(-64*exp(4)-128)*log(2)^3+(-1536*exp(4)-3072)*log(2)^2+(-16384*ex
p(4)-32768)*log(2)-65536*exp(4)-2*x^2-131072)/(x*log(2)^4+64*x*log(2)^3+1536*x*log(2)^2+16384*x*log(2)+65536*x
)/log(x)^2,x, algorithm="fricas")

[Out]

((e^4 + 2)*log(2)^4 + 64*(e^4 + 2)*log(2)^3 + 1536*(e^4 + 2)*log(2)^2 + 2*x^2 + 16384*(e^4 + 2)*log(2) + 65536
*e^4 + 131072)/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 102 vs. \(2 (19) = 38\).

Time = 0.07 (sec) , antiderivative size = 102, normalized size of antiderivative = 4.86 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {2 x^{2} + 2 \log {\left (2 \right )}^{4} + e^{4} \log {\left (2 \right )}^{4} + 128 \log {\left (2 \right )}^{3} + 64 e^{4} \log {\left (2 \right )}^{3} + 3072 \log {\left (2 \right )}^{2} + 32768 \log {\left (2 \right )} + 1536 e^{4} \log {\left (2 \right )}^{2} + 131072 + 16384 e^{4} \log {\left (2 \right )} + 65536 e^{4}}{\left (\log {\left (2 \right )}^{4} + 64 \log {\left (2 \right )}^{3} + 1536 \log {\left (2 \right )}^{2} + 16384 \log {\left (2 \right )} + 65536\right ) \log {\left (x \right )}} \]

[In]

integrate((4*x**2*ln(x)+(-exp(4)-2)*ln(2)**4+(-64*exp(4)-128)*ln(2)**3+(-1536*exp(4)-3072)*ln(2)**2+(-16384*ex
p(4)-32768)*ln(2)-65536*exp(4)-2*x**2-131072)/(x*ln(2)**4+64*x*ln(2)**3+1536*x*ln(2)**2+16384*x*ln(2)+65536*x)
/ln(x)**2,x)

[Out]

(2*x**2 + 2*log(2)**4 + exp(4)*log(2)**4 + 128*log(2)**3 + 64*exp(4)*log(2)**3 + 3072*log(2)**2 + 32768*log(2)
 + 1536*exp(4)*log(2)**2 + 131072 + 16384*exp(4)*log(2) + 65536*exp(4))/((log(2)**4 + 64*log(2)**3 + 1536*log(
2)**2 + 16384*log(2) + 65536)*log(x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 371 vs. \(2 (20) = 40\).

Time = 0.33 (sec) , antiderivative size = 371, normalized size of antiderivative = 17.67 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {e^{4} \log \left (2\right )^{4}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {64 \, e^{4} \log \left (2\right )^{3}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {2 \, \log \left (2\right )^{4}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {1536 \, e^{4} \log \left (2\right )^{2}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {128 \, \log \left (2\right )^{3}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {2 \, x^{2}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {16384 \, e^{4} \log \left (2\right )}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {3072 \, \log \left (2\right )^{2}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {65536 \, e^{4}}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {32768 \, \log \left (2\right )}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} + \frac {131072}{{\left (\log \left (2\right )^{4} + 64 \, \log \left (2\right )^{3} + 1536 \, \log \left (2\right )^{2} + 16384 \, \log \left (2\right ) + 65536\right )} \log \left (x\right )} \]

[In]

integrate((4*x^2*log(x)+(-exp(4)-2)*log(2)^4+(-64*exp(4)-128)*log(2)^3+(-1536*exp(4)-3072)*log(2)^2+(-16384*ex
p(4)-32768)*log(2)-65536*exp(4)-2*x^2-131072)/(x*log(2)^4+64*x*log(2)^3+1536*x*log(2)^2+16384*x*log(2)+65536*x
)/log(x)^2,x, algorithm="maxima")

[Out]

e^4*log(2)^4/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x)) + 64*e^4*log(2)^3/((log(
2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x)) + 2*log(2)^4/((log(2)^4 + 64*log(2)^3 + 153
6*log(2)^2 + 16384*log(2) + 65536)*log(x)) + 1536*e^4*log(2)^2/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 1638
4*log(2) + 65536)*log(x)) + 128*log(2)^3/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(
x)) + 2*x^2/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x)) + 16384*e^4*log(2)/((log(
2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x)) + 3072*log(2)^2/((log(2)^4 + 64*log(2)^3 +
1536*log(2)^2 + 16384*log(2) + 65536)*log(x)) + 65536*e^4/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log
(2) + 65536)*log(x)) + 32768*log(2)/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x)) +
 131072/((log(2)^4 + 64*log(2)^3 + 1536*log(2)^2 + 16384*log(2) + 65536)*log(x))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 99 vs. \(2 (20) = 40\).

Time = 0.26 (sec) , antiderivative size = 99, normalized size of antiderivative = 4.71 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {e^{4} \log \left (2\right )^{4} + 64 \, e^{4} \log \left (2\right )^{3} + 2 \, \log \left (2\right )^{4} + 1536 \, e^{4} \log \left (2\right )^{2} + 128 \, \log \left (2\right )^{3} + 2 \, x^{2} + 16384 \, e^{4} \log \left (2\right ) + 3072 \, \log \left (2\right )^{2} + 65536 \, e^{4} + 32768 \, \log \left (2\right ) + 131072}{\log \left (2\right )^{4} \log \left (x\right ) + 64 \, \log \left (2\right )^{3} \log \left (x\right ) + 1536 \, \log \left (2\right )^{2} \log \left (x\right ) + 16384 \, \log \left (2\right ) \log \left (x\right ) + 65536 \, \log \left (x\right )} \]

[In]

integrate((4*x^2*log(x)+(-exp(4)-2)*log(2)^4+(-64*exp(4)-128)*log(2)^3+(-1536*exp(4)-3072)*log(2)^2+(-16384*ex
p(4)-32768)*log(2)-65536*exp(4)-2*x^2-131072)/(x*log(2)^4+64*x*log(2)^3+1536*x*log(2)^2+16384*x*log(2)+65536*x
)/log(x)^2,x, algorithm="giac")

[Out]

(e^4*log(2)^4 + 64*e^4*log(2)^3 + 2*log(2)^4 + 1536*e^4*log(2)^2 + 128*log(2)^3 + 2*x^2 + 16384*e^4*log(2) + 3
072*log(2)^2 + 65536*e^4 + 32768*log(2) + 131072)/(log(2)^4*log(x) + 64*log(2)^3*log(x) + 1536*log(2)^2*log(x)
 + 16384*log(2)*log(x) + 65536*log(x))

Mupad [B] (verification not implemented)

Time = 9.86 (sec) , antiderivative size = 73, normalized size of antiderivative = 3.48 \[ \int \frac {-131072-65536 e^4-2 x^2+\left (-32768-16384 e^4\right ) \log (2)+\left (-3072-1536 e^4\right ) \log ^2(2)+\left (-128-64 e^4\right ) \log ^3(2)+\left (-2-e^4\right ) \log ^4(2)+4 x^2 \log (x)}{\left (65536 x+16384 x \log (2)+1536 x \log ^2(2)+64 x \log ^3(2)+x \log ^4(2)\right ) \log ^2(x)} \, dx=\frac {2\,x^2+65536\,{\mathrm {e}}^4+32768\,\ln \left (2\right )+16384\,{\mathrm {e}}^4\,\ln \left (2\right )+1536\,{\mathrm {e}}^4\,{\ln \left (2\right )}^2+64\,{\mathrm {e}}^4\,{\ln \left (2\right )}^3+{\mathrm {e}}^4\,{\ln \left (2\right )}^4+3072\,{\ln \left (2\right )}^2+128\,{\ln \left (2\right )}^3+2\,{\ln \left (2\right )}^4+131072}{\ln \left (x\right )\,{\left (\ln \left (2\right )+16\right )}^4} \]

[In]

int(-(65536*exp(4) - 4*x^2*log(x) + log(2)^3*(64*exp(4) + 128) + log(2)^2*(1536*exp(4) + 3072) + 2*x^2 + log(2
)*(16384*exp(4) + 32768) + log(2)^4*(exp(4) + 2) + 131072)/(log(x)^2*(65536*x + 16384*x*log(2) + 1536*x*log(2)
^2 + 64*x*log(2)^3 + x*log(2)^4)),x)

[Out]

(65536*exp(4) + 32768*log(2) + 16384*exp(4)*log(2) + 1536*exp(4)*log(2)^2 + 64*exp(4)*log(2)^3 + exp(4)*log(2)
^4 + 3072*log(2)^2 + 128*log(2)^3 + 2*log(2)^4 + 2*x^2 + 131072)/(log(x)*(log(2) + 16)^4)