\(\int (16-2 x+e^{x+2 x^2+x^3} (5+5 x+20 x^2+15 x^3)) \, dx\) [3600]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 27 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=5 \left (2+e^{\frac {\left (x+x^2\right )^2}{x}}+\frac {6-x}{5}\right ) x \]

[Out]

5*(-1/5*x+16/5+exp((x^2+x)^2/x))*x

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.74, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {2326} \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=-x^2+\frac {5 e^{x^3+2 x^2+x} \left (3 x^3+4 x^2+x\right )}{3 x^2+4 x+1}+16 x \]

[In]

Int[16 - 2*x + E^(x + 2*x^2 + x^3)*(5 + 5*x + 20*x^2 + 15*x^3),x]

[Out]

16*x - x^2 + (5*E^(x + 2*x^2 + x^3)*(x + 4*x^2 + 3*x^3))/(1 + 4*x + 3*x^2)

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = 16 x-x^2+\int e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right ) \, dx \\ & = 16 x-x^2+\frac {5 e^{x+2 x^2+x^3} \left (x+4 x^2+3 x^3\right )}{1+4 x+3 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.63 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=-x \left (-16-5 e^{x (1+x)^2}+x\right ) \]

[In]

Integrate[16 - 2*x + E^(x + 2*x^2 + x^3)*(5 + 5*x + 20*x^2 + 15*x^3),x]

[Out]

-(x*(-16 - 5*E^(x*(1 + x)^2) + x))

Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.78

method result size
risch \(16 x +5 \,{\mathrm e}^{x \left (1+x \right )^{2}} x -x^{2}\) \(21\)
default \(16 x +5 \,{\mathrm e}^{x^{3}+2 x^{2}+x} x -x^{2}\) \(24\)
norman \(16 x +5 \,{\mathrm e}^{x^{3}+2 x^{2}+x} x -x^{2}\) \(24\)
parallelrisch \(16 x +5 \,{\mathrm e}^{x^{3}+2 x^{2}+x} x -x^{2}\) \(24\)
parts \(16 x +5 \,{\mathrm e}^{x^{3}+2 x^{2}+x} x -x^{2}\) \(24\)

[In]

int((15*x^3+20*x^2+5*x+5)*exp(x^3+2*x^2+x)+16-2*x,x,method=_RETURNVERBOSE)

[Out]

16*x+5*exp(x*(1+x)^2)*x-x^2

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.85 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=-x^{2} + 5 \, x e^{\left (x^{3} + 2 \, x^{2} + x\right )} + 16 \, x \]

[In]

integrate((15*x^3+20*x^2+5*x+5)*exp(x^3+2*x^2+x)+16-2*x,x, algorithm="fricas")

[Out]

-x^2 + 5*x*e^(x^3 + 2*x^2 + x) + 16*x

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.74 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=- x^{2} + 5 x e^{x^{3} + 2 x^{2} + x} + 16 x \]

[In]

integrate((15*x**3+20*x**2+5*x+5)*exp(x**3+2*x**2+x)+16-2*x,x)

[Out]

-x**2 + 5*x*exp(x**3 + 2*x**2 + x) + 16*x

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.85 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=-x^{2} + 5 \, x e^{\left (x^{3} + 2 \, x^{2} + x\right )} + 16 \, x \]

[In]

integrate((15*x^3+20*x^2+5*x+5)*exp(x^3+2*x^2+x)+16-2*x,x, algorithm="maxima")

[Out]

-x^2 + 5*x*e^(x^3 + 2*x^2 + x) + 16*x

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.85 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=-x^{2} + 5 \, x e^{\left (x^{3} + 2 \, x^{2} + x\right )} + 16 \, x \]

[In]

integrate((15*x^3+20*x^2+5*x+5)*exp(x^3+2*x^2+x)+16-2*x,x, algorithm="giac")

[Out]

-x^2 + 5*x*e^(x^3 + 2*x^2 + x) + 16*x

Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.89 \[ \int \left (16-2 x+e^{x+2 x^2+x^3} \left (5+5 x+20 x^2+15 x^3\right )\right ) \, dx=16\,x-x^2+5\,x\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^x \]

[In]

int(exp(x + 2*x^2 + x^3)*(5*x + 20*x^2 + 15*x^3 + 5) - 2*x + 16,x)

[Out]

16*x - x^2 + 5*x*exp(x^3)*exp(2*x^2)*exp(x)