\(\int \frac {1}{16} (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)) \, dx\) [4293]

   Optimal result
   Rubi [B] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 22 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=e^3 \left (-\frac {37}{8}-5 x\right ) \left (1+\frac {1}{2} x (-1+\log (x))\right ) \]

[Out]

(1/2*(ln(x)-1)*x+1)*exp(3)*(-37/8-5*x)

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(55\) vs. \(2(22)=44\).

Time = 0.01 (sec) , antiderivative size = 55, normalized size of antiderivative = 2.50, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {12, 2350} \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=\frac {5 e^3 x^2}{4}-\frac {5}{2} e^3 x^2 \log (x)+\frac {5}{4} e^3 (2-x)^2+\frac {37 e^3 x}{16}-\frac {37}{16} e^3 x \log (x) \]

[In]

Int[(E^3*(-80 + 40*x) + E^3*(-37 - 80*x)*Log[x])/16,x]

[Out]

(5*E^3*(2 - x)^2)/4 + (37*E^3*x)/16 + (5*E^3*x^2)/4 - (37*E^3*x*Log[x])/16 - (5*E^3*x^2*Log[x])/2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2350

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
 e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b
, c, d, e, n, r}, x] && IGtQ[q, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{16} \int \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx \\ & = \frac {5}{4} e^3 (2-x)^2+\frac {1}{16} e^3 \int (-37-80 x) \log (x) \, dx \\ & = \frac {5}{4} e^3 (2-x)^2-\frac {37}{16} e^3 x \log (x)-\frac {5}{2} e^3 x^2 \log (x)-\frac {1}{16} e^3 \int (-37-40 x) \, dx \\ & = \frac {5}{4} e^3 (2-x)^2+\frac {37 e^3 x}{16}+\frac {5 e^3 x^2}{4}-\frac {37}{16} e^3 x \log (x)-\frac {5}{2} e^3 x^2 \log (x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.86 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=-\frac {43 e^3 x}{16}+\frac {5 e^3 x^2}{2}-\frac {37}{16} e^3 x \log (x)-\frac {5}{2} e^3 x^2 \log (x) \]

[In]

Integrate[(E^3*(-80 + 40*x) + E^3*(-37 - 80*x)*Log[x])/16,x]

[Out]

(-43*E^3*x)/16 + (5*E^3*x^2)/2 - (37*E^3*x*Log[x])/16 - (5*E^3*x^2*Log[x])/2

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.32

method result size
risch \(\frac {{\mathrm e}^{3} \left (-40 x^{2}-37 x \right ) \ln \left (x \right )}{16}+\frac {5 x^{2} {\mathrm e}^{3}}{2}-\frac {43 x \,{\mathrm e}^{3}}{16}\) \(29\)
norman \(-\frac {43 x \,{\mathrm e}^{3}}{16}+\frac {5 x^{2} {\mathrm e}^{3}}{2}-\frac {37 x \,{\mathrm e}^{3} \ln \left (x \right )}{16}-\frac {5 \,{\mathrm e}^{3} \ln \left (x \right ) x^{2}}{2}\) \(30\)
parallelrisch \(-\frac {43 x \,{\mathrm e}^{3}}{16}+\frac {5 x^{2} {\mathrm e}^{3}}{2}-\frac {37 x \,{\mathrm e}^{3} \ln \left (x \right )}{16}-\frac {5 \,{\mathrm e}^{3} \ln \left (x \right ) x^{2}}{2}\) \(30\)
default \(\frac {5 \,{\mathrm e}^{3} \left (-2 x +\frac {1}{2} x^{2}\right )}{2}+\frac {{\mathrm e}^{3} \left (-40 x^{2} \ln \left (x \right )+20 x^{2}-37 x \ln \left (x \right )+37 x \right )}{16}\) \(40\)
parts \(\frac {5 \,{\mathrm e}^{3} \left (-2 x +\frac {1}{2} x^{2}\right )}{2}-\frac {{\mathrm e}^{3} \left (40 x^{2} \ln \left (x \right )-20 x^{2}+37 x \ln \left (x \right )-37 x \right )}{16}\) \(40\)

[In]

int(1/16*(-80*x-37)*exp(3)*ln(x)+1/16*(40*x-80)*exp(3),x,method=_RETURNVERBOSE)

[Out]

1/16*exp(3)*(-40*x^2-37*x)*ln(x)+5/2*x^2*exp(3)-43/16*x*exp(3)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.32 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=-\frac {1}{16} \, {\left (40 \, x^{2} + 37 \, x\right )} e^{3} \log \left (x\right ) + \frac {1}{16} \, {\left (40 \, x^{2} - 43 \, x\right )} e^{3} \]

[In]

integrate(1/16*(-80*x-37)*exp(3)*log(x)+1/16*(40*x-80)*exp(3),x, algorithm="fricas")

[Out]

-1/16*(40*x^2 + 37*x)*e^3*log(x) + 1/16*(40*x^2 - 43*x)*e^3

Sympy [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.86 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=\frac {5 x^{2} e^{3}}{2} - \frac {43 x e^{3}}{16} + \left (- \frac {5 x^{2} e^{3}}{2} - \frac {37 x e^{3}}{16}\right ) \log {\left (x \right )} \]

[In]

integrate(1/16*(-80*x-37)*exp(3)*ln(x)+1/16*(40*x-80)*exp(3),x)

[Out]

5*x**2*exp(3)/2 - 43*x*exp(3)/16 + (-5*x**2*exp(3)/2 - 37*x*exp(3)/16)*log(x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 38 vs. \(2 (17) = 34\).

Time = 0.18 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.73 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=\frac {1}{16} \, {\left (20 \, x^{2} - {\left (40 \, x^{2} + 37 \, x\right )} \log \left (x\right ) + 37 \, x\right )} e^{3} + \frac {5}{4} \, {\left (x^{2} - 4 \, x\right )} e^{3} \]

[In]

integrate(1/16*(-80*x-37)*exp(3)*log(x)+1/16*(40*x-80)*exp(3),x, algorithm="maxima")

[Out]

1/16*(20*x^2 - (40*x^2 + 37*x)*log(x) + 37*x)*e^3 + 5/4*(x^2 - 4*x)*e^3

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (17) = 34\).

Time = 0.25 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.68 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=-\frac {1}{16} \, {\left (40 \, x^{2} \log \left (x\right ) - 20 \, x^{2} + 37 \, x \log \left (x\right ) - 37 \, x\right )} e^{3} + \frac {5}{4} \, {\left (x^{2} - 4 \, x\right )} e^{3} \]

[In]

integrate(1/16*(-80*x-37)*exp(3)*log(x)+1/16*(40*x-80)*exp(3),x, algorithm="giac")

[Out]

-1/16*(40*x^2*log(x) - 20*x^2 + 37*x*log(x) - 37*x)*e^3 + 5/4*(x^2 - 4*x)*e^3

Mupad [B] (verification not implemented)

Time = 12.67 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.86 \[ \int \frac {1}{16} \left (e^3 (-80+40 x)+e^3 (-37-80 x) \log (x)\right ) \, dx=-\frac {x\,{\mathrm {e}}^3\,\left (37\,\ln \left (x\right )-40\,x+40\,x\,\ln \left (x\right )+43\right )}{16} \]

[In]

int((exp(3)*(40*x - 80))/16 - (exp(3)*log(x)*(80*x + 37))/16,x)

[Out]

-(x*exp(3)*(37*log(x) - 40*x + 40*x*log(x) + 43))/16