\(\int \frac {-120 e^x+4 x-x^3+e^x (60 x-15 x^3) \log (\frac {4-x^2}{x^2})}{-60 x+15 x^3} \, dx\) [4575]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 51, antiderivative size = 28 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=2+\frac {1}{15} \left (-e^2-x\right )-e^x \log \left (-1+\frac {4}{x^2}\right ) \]

[Out]

2-exp(x)*ln(4/x^2-1)-1/15*x-1/15*exp(2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.71, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {1607, 6857, 2326} \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=-\frac {e^x \left (4 x \log \left (\frac {4}{x^2}-1\right )-x^3 \log \left (\frac {4}{x^2}-1\right )\right )}{\left (4-x^2\right ) x}-\frac {x}{15} \]

[In]

Int[(-120*E^x + 4*x - x^3 + E^x*(60*x - 15*x^3)*Log[(4 - x^2)/x^2])/(-60*x + 15*x^3),x]

[Out]

-1/15*x - (E^x*(4*x*Log[-1 + 4/x^2] - x^3*Log[-1 + 4/x^2]))/(x*(4 - x^2))

Rule 1607

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{x \left (-60+15 x^2\right )} \, dx \\ & = \int \left (-\frac {1}{15}-\frac {e^x \left (8-4 x \log \left (-1+\frac {4}{x^2}\right )+x^3 \log \left (-1+\frac {4}{x^2}\right )\right )}{x \left (-4+x^2\right )}\right ) \, dx \\ & = -\frac {x}{15}-\int \frac {e^x \left (8-4 x \log \left (-1+\frac {4}{x^2}\right )+x^3 \log \left (-1+\frac {4}{x^2}\right )\right )}{x \left (-4+x^2\right )} \, dx \\ & = -\frac {x}{15}-\frac {e^x \left (4 x \log \left (-1+\frac {4}{x^2}\right )-x^3 \log \left (-1+\frac {4}{x^2}\right )\right )}{x \left (4-x^2\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.75 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=\frac {1}{15} \left (-x-15 e^x \log \left (-1+\frac {4}{x^2}\right )\right ) \]

[In]

Integrate[(-120*E^x + 4*x - x^3 + E^x*(60*x - 15*x^3)*Log[(4 - x^2)/x^2])/(-60*x + 15*x^3),x]

[Out]

(-x - 15*E^x*Log[-1 + 4/x^2])/15

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.71

method result size
parallelrisch \(-{\mathrm e}^{x} \ln \left (-\frac {x^{2}-4}{x^{2}}\right )-\frac {x}{15}\) \(20\)
default \(-\frac {x}{15}-\ln \left (\frac {-x^{2}+4}{x^{2}}\right ) {\mathrm e}^{x}\) \(21\)
norman \(-\frac {x}{15}-\ln \left (\frac {-x^{2}+4}{x^{2}}\right ) {\mathrm e}^{x}\) \(21\)
parts \(-\frac {x}{15}-\ln \left (\frac {-x^{2}+4}{x^{2}}\right ) {\mathrm e}^{x}\) \(21\)
risch \(-{\mathrm e}^{x} \ln \left (x^{2}-4\right )+2 \,{\mathrm e}^{x} \ln \left (x \right )-\frac {x}{15}-\frac {i {\mathrm e}^{x} \pi \,\operatorname {csgn}\left (i \left (x^{2}-4\right )\right ) {\operatorname {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )}^{2}}{2}+\frac {i {\mathrm e}^{x} \pi \,\operatorname {csgn}\left (i \left (x^{2}-4\right )\right ) \operatorname {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right ) \operatorname {csgn}\left (\frac {i}{x^{2}}\right )}{2}-\frac {i {\mathrm e}^{x} \pi {\operatorname {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )}^{3}}{2}+i {\mathrm e}^{x} \pi {\operatorname {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )}^{2}-\frac {i {\mathrm e}^{x} \pi {\operatorname {csgn}\left (\frac {i \left (x^{2}-4\right )}{x^{2}}\right )}^{2} \operatorname {csgn}\left (\frac {i}{x^{2}}\right )}{2}-\frac {i \pi \operatorname {csgn}\left (i x \right )^{2} \operatorname {csgn}\left (i x^{2}\right ) {\mathrm e}^{x}}{2}+i \pi \,\operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}-\frac {i \pi \operatorname {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}}{2}-i {\mathrm e}^{x} \pi \) \(212\)

[In]

int(((-15*x^3+60*x)*exp(x)*ln((-x^2+4)/x^2)-120*exp(x)-x^3+4*x)/(15*x^3-60*x),x,method=_RETURNVERBOSE)

[Out]

-exp(x)*ln(-(x^2-4)/x^2)-1/15*x

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=-e^{x} \log \left (-\frac {x^{2} - 4}{x^{2}}\right ) - \frac {1}{15} \, x \]

[In]

integrate(((-15*x^3+60*x)*exp(x)*log((-x^2+4)/x^2)-120*exp(x)-x^3+4*x)/(15*x^3-60*x),x, algorithm="fricas")

[Out]

-e^x*log(-(x^2 - 4)/x^2) - 1/15*x

Sympy [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.61 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=- \frac {x}{15} - e^{x} \log {\left (\frac {4 - x^{2}}{x^{2}} \right )} \]

[In]

integrate(((-15*x**3+60*x)*exp(x)*ln((-x**2+4)/x**2)-120*exp(x)-x**3+4*x)/(15*x**3-60*x),x)

[Out]

-x/15 - exp(x)*log((4 - x**2)/x**2)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=-e^{x} \log \left (x + 2\right ) + 2 \, e^{x} \log \left (x\right ) - e^{x} \log \left (-x + 2\right ) - \frac {1}{15} \, x \]

[In]

integrate(((-15*x^3+60*x)*exp(x)*log((-x^2+4)/x^2)-120*exp(x)-x^3+4*x)/(15*x^3-60*x),x, algorithm="maxima")

[Out]

-e^x*log(x + 2) + 2*e^x*log(x) - e^x*log(-x + 2) - 1/15*x

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=-e^{x} \log \left (-\frac {x^{2} - 4}{x^{2}}\right ) - \frac {1}{15} \, x \]

[In]

integrate(((-15*x^3+60*x)*exp(x)*log((-x^2+4)/x^2)-120*exp(x)-x^3+4*x)/(15*x^3-60*x),x, algorithm="giac")

[Out]

-e^x*log(-(x^2 - 4)/x^2) - 1/15*x

Mupad [B] (verification not implemented)

Time = 13.16 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.68 \[ \int \frac {-120 e^x+4 x-x^3+e^x \left (60 x-15 x^3\right ) \log \left (\frac {4-x^2}{x^2}\right )}{-60 x+15 x^3} \, dx=-\frac {x}{15}-{\mathrm {e}}^x\,\ln \left (-\frac {x^2-4}{x^2}\right ) \]

[In]

int(-(4*x - 120*exp(x) - x^3 + exp(x)*log(-(x^2 - 4)/x^2)*(60*x - 15*x^3))/(60*x - 15*x^3),x)

[Out]

- x/15 - exp(x)*log(-(x^2 - 4)/x^2)