\(\int (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)) \, dx\) [4669]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 20 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=4+\left (3+e^x+x\right )^2-4 \left (10+x-16 x^4\right ) \]

[Out]

-36+64*x^4-4*x+(exp(x)+3+x)^2

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.50, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2225, 2207} \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=64 x^4+x^2+2 x-2 e^x+e^{2 x}+2 e^x (x+4) \]

[In]

Int[2 + 2*E^(2*x) + 2*x + 256*x^3 + E^x*(8 + 2*x),x]

[Out]

-2*E^x + E^(2*x) + 2*x + x^2 + 64*x^4 + 2*E^x*(4 + x)

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps \begin{align*} \text {integral}& = 2 x+x^2+64 x^4+2 \int e^{2 x} \, dx+\int e^x (8+2 x) \, dx \\ & = e^{2 x}+2 x+x^2+64 x^4+2 e^x (4+x)-2 \int e^x \, dx \\ & = -2 e^x+e^{2 x}+2 x+x^2+64 x^4+2 e^x (4+x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.60 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=2 \left (\frac {e^{2 x}}{2}+x+\frac {x^2}{2}+32 x^4+e^x (3+x)\right ) \]

[In]

Integrate[2 + 2*E^(2*x) + 2*x + 256*x^3 + E^x*(8 + 2*x),x]

[Out]

2*(E^(2*x)/2 + x + x^2/2 + 32*x^4 + E^x*(3 + x))

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.25

method result size
risch \({\mathrm e}^{2 x}+\left (2 x +6\right ) {\mathrm e}^{x}+64 x^{4}+x^{2}+2 x\) \(25\)
default \(64 x^{4}+2 \,{\mathrm e}^{x} x +x^{2}+{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x}+2 x\) \(26\)
norman \(64 x^{4}+2 \,{\mathrm e}^{x} x +x^{2}+{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x}+2 x\) \(26\)
parallelrisch \(64 x^{4}+2 \,{\mathrm e}^{x} x +x^{2}+{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x}+2 x\) \(26\)
parts \(64 x^{4}+2 \,{\mathrm e}^{x} x +x^{2}+{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x}+2 x\) \(26\)

[In]

int(2*exp(x)^2+(2*x+8)*exp(x)+256*x^3+2*x+2,x,method=_RETURNVERBOSE)

[Out]

exp(2*x)+(2*x+6)*exp(x)+64*x^4+x^2+2*x

Fricas [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.15 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=64 \, x^{4} + x^{2} + 2 \, {\left (x + 3\right )} e^{x} + 2 \, x + e^{\left (2 \, x\right )} \]

[In]

integrate(2*exp(x)^2+(2*x+8)*exp(x)+256*x^3+2*x+2,x, algorithm="fricas")

[Out]

64*x^4 + x^2 + 2*(x + 3)*e^x + 2*x + e^(2*x)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.20 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=64 x^{4} + x^{2} + 2 x + \left (2 x + 6\right ) e^{x} + e^{2 x} \]

[In]

integrate(2*exp(x)**2+(2*x+8)*exp(x)+256*x**3+2*x+2,x)

[Out]

64*x**4 + x**2 + 2*x + (2*x + 6)*exp(x) + exp(2*x)

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.15 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=64 \, x^{4} + x^{2} + 2 \, {\left (x + 3\right )} e^{x} + 2 \, x + e^{\left (2 \, x\right )} \]

[In]

integrate(2*exp(x)^2+(2*x+8)*exp(x)+256*x^3+2*x+2,x, algorithm="maxima")

[Out]

64*x^4 + x^2 + 2*(x + 3)*e^x + 2*x + e^(2*x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.15 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=64 \, x^{4} + x^{2} + 2 \, {\left (x + 3\right )} e^{x} + 2 \, x + e^{\left (2 \, x\right )} \]

[In]

integrate(2*exp(x)^2+(2*x+8)*exp(x)+256*x^3+2*x+2,x, algorithm="giac")

[Out]

64*x^4 + x^2 + 2*(x + 3)*e^x + 2*x + e^(2*x)

Mupad [B] (verification not implemented)

Time = 10.25 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.25 \[ \int \left (2+2 e^{2 x}+2 x+256 x^3+e^x (8+2 x)\right ) \, dx=2\,x+{\mathrm {e}}^{2\,x}+6\,{\mathrm {e}}^x+2\,x\,{\mathrm {e}}^x+x^2+64\,x^4 \]

[In]

int(2*x + 2*exp(2*x) + exp(x)*(2*x + 8) + 256*x^3 + 2,x)

[Out]

2*x + exp(2*x) + 6*exp(x) + 2*x*exp(x) + x^2 + 64*x^4