\(\int \frac {3 x+2 x^2+(4 e^{2 e}+e^e (9 x+6 x^2)) \log (x)+e^{2 e} (-2+9 x+6 x^2) \log ^2(x)+e^{3 e} (-2+3 x+2 x^2) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx\) [4727]

   Optimal result
   Rubi [C] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 120, antiderivative size = 26 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=2+x+\frac {x}{\left (x+\frac {e^{-e} x}{\log (x)}\right )^2}+\frac {3 \log (x)}{2} \]

[Out]

x/(x+x/exp(exp(1))/ln(x))^2+x+2+3/2*ln(x)

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.91 (sec) , antiderivative size = 162, normalized size of antiderivative = 6.23, number of steps used = 15, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {6820, 12, 6874, 14, 2343, 2346, 2209} \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=e^{e^{-e}-2 e} \left (1-2 e^e\right ) \operatorname {ExpIntegralEi}\left (-e^{-e} \left (e^e \log (x)+1\right )\right )+2 e^{e^{-e}-e} \operatorname {ExpIntegralEi}\left (-e^{-e} \left (e^e \log (x)+1\right )\right )-e^{e^{-e}-2 e} \operatorname {ExpIntegralEi}\left (-e^{-e} \left (e^e \log (x)+1\right )\right )+x+\frac {1}{x}+\frac {3 \log (x)}{2}-\frac {2-e^{-e}}{x \left (e^e \log (x)+1\right )}-\frac {e^{-e}}{x \left (e^e \log (x)+1\right )}+\frac {1}{x \left (e^e \log (x)+1\right )^2} \]

[In]

Int[(3*x + 2*x^2 + (4*E^(2*E) + E^E*(9*x + 6*x^2))*Log[x] + E^(2*E)*(-2 + 9*x + 6*x^2)*Log[x]^2 + E^(3*E)*(-2
+ 3*x + 2*x^2)*Log[x]^3)/(2*x^2 + 6*E^E*x^2*Log[x] + 6*E^(2*E)*x^2*Log[x]^2 + 2*E^(3*E)*x^2*Log[x]^3),x]

[Out]

x^(-1) + x - E^(-2*E + E^(-E))*ExpIntegralEi[-((1 + E^E*Log[x])/E^E)] + 2*E^(-E + E^(-E))*ExpIntegralEi[-((1 +
 E^E*Log[x])/E^E)] + E^(-2*E + E^(-E))*(1 - 2*E^E)*ExpIntegralEi[-((1 + E^E*Log[x])/E^E)] + (3*Log[x])/2 + 1/(
x*(1 + E^E*Log[x])^2) - 1/(E^E*x*(1 + E^E*Log[x])) - (2 - E^(-E))/(x*(1 + E^E*Log[x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2343

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log
[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2346

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x (3+2 x)+e^e \left (4 e^e+3 x (3+2 x)\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2 \left (1+e^e \log (x)\right )^3} \, dx \\ & = \frac {1}{2} \int \frac {x (3+2 x)+e^e \left (4 e^e+3 x (3+2 x)\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{x^2 \left (1+e^e \log (x)\right )^3} \, dx \\ & = \frac {1}{2} \int \left (\frac {-2+3 x+2 x^2}{x^2}-\frac {4 e^e}{x^2 \left (1+e^e \log (x)\right )^3}+\frac {2 \left (-1+2 e^e\right )}{x^2 \left (1+e^e \log (x)\right )^2}+\frac {4}{x^2 \left (1+e^e \log (x)\right )}\right ) \, dx \\ & = \frac {1}{2} \int \frac {-2+3 x+2 x^2}{x^2} \, dx+2 \int \frac {1}{x^2 \left (1+e^e \log (x)\right )} \, dx-\left (2 e^e\right ) \int \frac {1}{x^2 \left (1+e^e \log (x)\right )^3} \, dx+\left (-1+2 e^e\right ) \int \frac {1}{x^2 \left (1+e^e \log (x)\right )^2} \, dx \\ & = \frac {1}{x \left (1+e^e \log (x)\right )^2}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}+\frac {1}{2} \int \left (2-\frac {2}{x^2}+\frac {3}{x}\right ) \, dx+2 \text {Subst}\left (\int \frac {e^{-x}}{1+e^e x} \, dx,x,\log (x)\right )+\left (-2+e^{-e}\right ) \int \frac {1}{x^2 \left (1+e^e \log (x)\right )} \, dx+\int \frac {1}{x^2 \left (1+e^e \log (x)\right )^2} \, dx \\ & = \frac {1}{x}+x+2 e^{-e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+\frac {3 \log (x)}{2}+\frac {1}{x \left (1+e^e \log (x)\right )^2}-\frac {e^{-e}}{x \left (1+e^e \log (x)\right )}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}-e^{-e} \int \frac {1}{x^2 \left (1+e^e \log (x)\right )} \, dx+\left (-2+e^{-e}\right ) \text {Subst}\left (\int \frac {e^{-x}}{1+e^e x} \, dx,x,\log (x)\right ) \\ & = \frac {1}{x}+x+2 e^{-e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+e^{-2 e+e^{-e}} \left (1-2 e^e\right ) \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+\frac {3 \log (x)}{2}+\frac {1}{x \left (1+e^e \log (x)\right )^2}-\frac {e^{-e}}{x \left (1+e^e \log (x)\right )}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )}-e^{-e} \text {Subst}\left (\int \frac {e^{-x}}{1+e^e x} \, dx,x,\log (x)\right ) \\ & = \frac {1}{x}+x-e^{-2 e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+2 e^{-e+e^{-e}} \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+e^{-2 e+e^{-e}} \left (1-2 e^e\right ) \text {Ei}\left (-e^{-e} \left (1+e^e \log (x)\right )\right )+\frac {3 \log (x)}{2}+\frac {1}{x \left (1+e^e \log (x)\right )^2}-\frac {e^{-e}}{x \left (1+e^e \log (x)\right )}+\frac {e^{-e} \left (1-2 e^e\right )}{x \left (1+e^e \log (x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.62 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=\frac {1}{2} \left (3 \log (x)+2 \left (x-\frac {2}{x+e^e x \log (x)}+\frac {1+\frac {1}{\left (1+e^e \log (x)\right )^2}}{x}\right )\right ) \]

[In]

Integrate[(3*x + 2*x^2 + (4*E^(2*E) + E^E*(9*x + 6*x^2))*Log[x] + E^(2*E)*(-2 + 9*x + 6*x^2)*Log[x]^2 + E^(3*E
)*(-2 + 3*x + 2*x^2)*Log[x]^3)/(2*x^2 + 6*E^E*x^2*Log[x] + 6*E^(2*E)*x^2*Log[x]^2 + 2*E^(3*E)*x^2*Log[x]^3),x]

[Out]

(3*Log[x] + 2*(x - 2/(x + E^E*x*Log[x]) + (1 + (1 + E^E*Log[x])^(-2))/x))/2

Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.65

method result size
risch \(\frac {3 x \ln \left (x \right )+2 x^{2}+2}{2 x}-\frac {2 \,{\mathrm e}^{{\mathrm e}} \ln \left (x \right )+1}{x \left ({\mathrm e}^{{\mathrm e}} \ln \left (x \right )+1\right )^{2}}\) \(43\)
norman \(\frac {x^{2}+{\mathrm e}^{2 \,{\mathrm e}} \ln \left (x \right )^{2}+x^{2} {\mathrm e}^{2 \,{\mathrm e}} \ln \left (x \right )^{2}+\frac {3 \,{\mathrm e}^{2 \,{\mathrm e}} x \ln \left (x \right )^{3}}{2}+\frac {3 x \ln \left (x \right )}{2}+3 \,{\mathrm e}^{{\mathrm e}} x \ln \left (x \right )^{2}+2 x^{2} {\mathrm e}^{{\mathrm e}} \ln \left (x \right )}{x \left ({\mathrm e}^{{\mathrm e}} \ln \left (x \right )+1\right )^{2}}\) \(79\)
parallelrisch \(\frac {3 \,{\mathrm e}^{2 \,{\mathrm e}} x \ln \left (x \right )^{3}+2 x^{2} {\mathrm e}^{2 \,{\mathrm e}} \ln \left (x \right )^{2}+2 \,{\mathrm e}^{2 \,{\mathrm e}} \ln \left (x \right )^{2}+6 \,{\mathrm e}^{{\mathrm e}} x \ln \left (x \right )^{2}+4 x^{2} {\mathrm e}^{{\mathrm e}} \ln \left (x \right )+3 x \ln \left (x \right )+2 x^{2}}{2 x \left ({\mathrm e}^{2 \,{\mathrm e}} \ln \left (x \right )^{2}+2 \,{\mathrm e}^{{\mathrm e}} \ln \left (x \right )+1\right )}\) \(95\)
default \(\text {Expression too large to display}\) \(960\)

[In]

int(((2*x^2+3*x-2)*exp(exp(1))^3*ln(x)^3+(6*x^2+9*x-2)*exp(exp(1))^2*ln(x)^2+(4*exp(exp(1))^2+(6*x^2+9*x)*exp(
exp(1)))*ln(x)+2*x^2+3*x)/(2*x^2*exp(exp(1))^3*ln(x)^3+6*x^2*exp(exp(1))^2*ln(x)^2+6*x^2*exp(exp(1))*ln(x)+2*x
^2),x,method=_RETURNVERBOSE)

[Out]

1/2*(3*x*ln(x)+2*x^2+2)/x-(2*exp(exp(1))*ln(x)+1)/x/(exp(exp(1))*ln(x)+1)^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 82 vs. \(2 (24) = 48\).

Time = 0.25 (sec) , antiderivative size = 82, normalized size of antiderivative = 3.15 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=\frac {3 \, x e^{\left (2 \, e\right )} \log \left (x\right )^{3} + 2 \, {\left ({\left (x^{2} + 1\right )} e^{\left (2 \, e\right )} + 3 \, x e^{e}\right )} \log \left (x\right )^{2} + 2 \, x^{2} + {\left (4 \, x^{2} e^{e} + 3 \, x\right )} \log \left (x\right )}{2 \, {\left (x e^{\left (2 \, e\right )} \log \left (x\right )^{2} + 2 \, x e^{e} \log \left (x\right ) + x\right )}} \]

[In]

integrate(((2*x^2+3*x-2)*exp(exp(1))^3*log(x)^3+(6*x^2+9*x-2)*exp(exp(1))^2*log(x)^2+(4*exp(exp(1))^2+(6*x^2+9
*x)*exp(exp(1)))*log(x)+2*x^2+3*x)/(2*x^2*exp(exp(1))^3*log(x)^3+6*x^2*exp(exp(1))^2*log(x)^2+6*x^2*exp(exp(1)
)*log(x)+2*x^2),x, algorithm="fricas")

[Out]

1/2*(3*x*e^(2*e)*log(x)^3 + 2*((x^2 + 1)*e^(2*e) + 3*x*e^e)*log(x)^2 + 2*x^2 + (4*x^2*e^e + 3*x)*log(x))/(x*e^
(2*e)*log(x)^2 + 2*x*e^e*log(x) + x)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 51 vs. \(2 (24) = 48\).

Time = 0.09 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.96 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=x + \frac {- 2 e^{e} \log {\left (x \right )} - 1}{x e^{2 e} \log {\left (x \right )}^{2} + 2 x e^{e} \log {\left (x \right )} + x} + \frac {3 \log {\left (x \right )}}{2} + \frac {1}{x} \]

[In]

integrate(((2*x**2+3*x-2)*exp(exp(1))**3*ln(x)**3+(6*x**2+9*x-2)*exp(exp(1))**2*ln(x)**2+(4*exp(exp(1))**2+(6*
x**2+9*x)*exp(exp(1)))*ln(x)+2*x**2+3*x)/(2*x**2*exp(exp(1))**3*ln(x)**3+6*x**2*exp(exp(1))**2*ln(x)**2+6*x**2
*exp(exp(1))*ln(x)+2*x**2),x)

[Out]

x + (-2*exp(E)*log(x) - 1)/(x*exp(2*E)*log(x)**2 + 2*x*exp(E)*log(x) + x) + 3*log(x)/2 + 1/x

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 108 vs. \(2 (24) = 48\).

Time = 0.23 (sec) , antiderivative size = 108, normalized size of antiderivative = 4.15 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=\frac {8 \, x^{2} e^{\left (2 \, e\right )} \log \left (x\right ) + 4 \, x^{2} e^{e} + 4 \, {\left (x^{2} e^{\left (3 \, e\right )} + e^{\left (3 \, e\right )}\right )} \log \left (x\right )^{2} + 3 \, x}{4 \, {\left (x e^{\left (3 \, e\right )} \log \left (x\right )^{2} + 2 \, x e^{\left (2 \, e\right )} \log \left (x\right ) + x e^{e}\right )}} - \frac {3}{4 \, {\left (e^{\left (3 \, e\right )} \log \left (x\right )^{2} + 2 \, e^{\left (2 \, e\right )} \log \left (x\right ) + e^{e}\right )}} + \frac {3}{2} \, \log \left (x\right ) \]

[In]

integrate(((2*x^2+3*x-2)*exp(exp(1))^3*log(x)^3+(6*x^2+9*x-2)*exp(exp(1))^2*log(x)^2+(4*exp(exp(1))^2+(6*x^2+9
*x)*exp(exp(1)))*log(x)+2*x^2+3*x)/(2*x^2*exp(exp(1))^3*log(x)^3+6*x^2*exp(exp(1))^2*log(x)^2+6*x^2*exp(exp(1)
)*log(x)+2*x^2),x, algorithm="maxima")

[Out]

1/4*(8*x^2*e^(2*e)*log(x) + 4*x^2*e^e + 4*(x^2*e^(3*e) + e^(3*e))*log(x)^2 + 3*x)/(x*e^(3*e)*log(x)^2 + 2*x*e^
(2*e)*log(x) + x*e^e) - 3/4/(e^(3*e)*log(x)^2 + 2*e^(2*e)*log(x) + e^e) + 3/2*log(x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 93 vs. \(2 (24) = 48\).

Time = 0.28 (sec) , antiderivative size = 93, normalized size of antiderivative = 3.58 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=\frac {2 \, x^{2} e^{\left (2 \, e\right )} \log \left (x\right )^{2} + 3 \, x e^{\left (2 \, e\right )} \log \left (x\right )^{3} + 4 \, x^{2} e^{e} \log \left (x\right ) + 6 \, x e^{e} \log \left (x\right )^{2} + 2 \, e^{\left (2 \, e\right )} \log \left (x\right )^{2} + 2 \, x^{2} + 3 \, x \log \left (x\right )}{2 \, {\left (x e^{\left (2 \, e\right )} \log \left (x\right )^{2} + 2 \, x e^{e} \log \left (x\right ) + x\right )}} \]

[In]

integrate(((2*x^2+3*x-2)*exp(exp(1))^3*log(x)^3+(6*x^2+9*x-2)*exp(exp(1))^2*log(x)^2+(4*exp(exp(1))^2+(6*x^2+9
*x)*exp(exp(1)))*log(x)+2*x^2+3*x)/(2*x^2*exp(exp(1))^3*log(x)^3+6*x^2*exp(exp(1))^2*log(x)^2+6*x^2*exp(exp(1)
)*log(x)+2*x^2),x, algorithm="giac")

[Out]

1/2*(2*x^2*e^(2*e)*log(x)^2 + 3*x*e^(2*e)*log(x)^3 + 4*x^2*e^e*log(x) + 6*x*e^e*log(x)^2 + 2*e^(2*e)*log(x)^2
+ 2*x^2 + 3*x*log(x))/(x*e^(2*e)*log(x)^2 + 2*x*e^e*log(x) + x)

Mupad [B] (verification not implemented)

Time = 10.89 (sec) , antiderivative size = 178, normalized size of antiderivative = 6.85 \[ \int \frac {3 x+2 x^2+\left (4 e^{2 e}+e^e \left (9 x+6 x^2\right )\right ) \log (x)+e^{2 e} \left (-2+9 x+6 x^2\right ) \log ^2(x)+e^{3 e} \left (-2+3 x+2 x^2\right ) \log ^3(x)}{2 x^2+6 e^e x^2 \log (x)+6 e^{2 e} x^2 \log ^2(x)+2 e^{3 e} x^2 \log ^3(x)} \, dx=x+\frac {3\,\ln \left (x\right )}{2}-\frac {\frac {{\mathrm {e}}^{-3\,\mathrm {e}}}{2\,x}+\frac {{\mathrm {e}}^{-\mathrm {e}}\,{\ln \left (x\right )}^2}{x}+\frac {{\mathrm {e}}^{-2\,\mathrm {e}}\,\ln \left (x\right )\,\left (2\,{\mathrm {e}}^{\mathrm {e}}+3\right )}{2\,x}}{{\ln \left (x\right )}^2+2\,{\mathrm {e}}^{-\mathrm {e}}\,\ln \left (x\right )+{\mathrm {e}}^{-2\,\mathrm {e}}}-\frac {\frac {{\mathrm {e}}^{-3\,\mathrm {e}}\,\left (2\,{\mathrm {e}}^{2\,\mathrm {e}}+3\,{\mathrm {e}}^{\mathrm {e}}-1\right )}{2\,x}-\frac {{\mathrm {e}}^{-\mathrm {e}}\,{\ln \left (x\right )}^2}{x}+\frac {{\mathrm {e}}^{-2\,\mathrm {e}}\,\ln \left (x\right )\,\left (2\,{\mathrm {e}}^{\mathrm {e}}-3\right )}{2\,x}}{{\mathrm {e}}^{-\mathrm {e}}+\ln \left (x\right )}-\frac {{\mathrm {e}}^{-\mathrm {e}}\,\ln \left (x\right )}{x}+\frac {{\mathrm {e}}^{-2\,\mathrm {e}}\,\left (2\,{\mathrm {e}}^{2\,\mathrm {e}}+4\,{\mathrm {e}}^{\mathrm {e}}-1\right )}{2\,x} \]

[In]

int((3*x + log(x)*(4*exp(2*exp(1)) + exp(exp(1))*(9*x + 6*x^2)) + 2*x^2 + exp(3*exp(1))*log(x)^3*(3*x + 2*x^2
- 2) + exp(2*exp(1))*log(x)^2*(9*x + 6*x^2 - 2))/(2*x^2 + 6*x^2*exp(2*exp(1))*log(x)^2 + 2*x^2*exp(3*exp(1))*l
og(x)^3 + 6*x^2*exp(exp(1))*log(x)),x)

[Out]

x + (3*log(x))/2 - (exp(-3*exp(1))/(2*x) + (exp(-exp(1))*log(x)^2)/x + (exp(-2*exp(1))*log(x)*(2*exp(exp(1)) +
 3))/(2*x))/(exp(-2*exp(1)) + log(x)^2 + 2*exp(-exp(1))*log(x)) - ((exp(-3*exp(1))*(2*exp(2*exp(1)) + 3*exp(ex
p(1)) - 1))/(2*x) - (exp(-exp(1))*log(x)^2)/x + (exp(-2*exp(1))*log(x)*(2*exp(exp(1)) - 3))/(2*x))/(exp(-exp(1
)) + log(x)) - (exp(-exp(1))*log(x))/x + (exp(-2*exp(1))*(2*exp(2*exp(1)) + 4*exp(exp(1)) - 1))/(2*x)