\(\int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x (-6 x^2-10 x^3-10 x^4)+(500 x^3-40 e^x x^3+200 x^4+20 x^5) \log (25 x-2 e^x x+10 x^2+x^3)}{-125+10 e^x-50 x-5 x^2} \, dx\) [4918]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 103, antiderivative size = 28 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=x^4 \left (-\frac {1}{5 x}-\log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right ) \]

[Out]

x^4*(-1/5/x-ln(x*((5+x)^2-2*exp(x))))

Rubi [A] (verified)

Time = 1.37 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6873, 12, 6820, 6874, 14, 2631, 45} \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=x^4 \left (-\log \left (x (x+5)^2-2 e^x x\right )\right )-\frac {x^3}{5} \]

[In]

Int[(75*x^2 + 155*x^3 + 103*x^4 + 15*x^5 + E^x*(-6*x^2 - 10*x^3 - 10*x^4) + (500*x^3 - 40*E^x*x^3 + 200*x^4 +
20*x^5)*Log[25*x - 2*E^x*x + 10*x^2 + x^3])/(-125 + 10*E^x - 50*x - 5*x^2),x]

[Out]

-1/5*x^3 - x^4*Log[-2*E^x*x + x*(5 + x)^2]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2631

Int[Log[u_]*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[(a + b*x)^(m + 1)*(Log[u]/(b*(m + 1))), x] - Dist[1/
(b*(m + 1)), Int[SimplifyIntegrand[(a + b*x)^(m + 1)*(D[u, x]/u), x], x], x] /; FreeQ[{a, b, m}, x] && Inverse
FunctionFreeQ[u, x] && NeQ[m, -1]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {-75 x^2-155 x^3-103 x^4-15 x^5-e^x \left (-6 x^2-10 x^3-10 x^4\right )-\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{5 \left (25-2 e^x+10 x+x^2\right )} \, dx \\ & = \frac {1}{5} \int \frac {-75 x^2-155 x^3-103 x^4-15 x^5-e^x \left (-6 x^2-10 x^3-10 x^4\right )-\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{25-2 e^x+10 x+x^2} \, dx \\ & = \frac {1}{5} \int \frac {x^2 \left (75+155 x+103 x^2+15 x^3-2 e^x \left (3+5 x+5 x^2\right )+20 x \left (-2 e^x+(5+x)^2\right ) \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right )}{2 e^x-(5+x)^2} \, dx \\ & = \frac {1}{5} \int \left (\frac {5 x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2}-x^2 \left (3+5 x+5 x^2+20 x \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right )\right ) \, dx \\ & = -\left (\frac {1}{5} \int x^2 \left (3+5 x+5 x^2+20 x \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right ) \, dx\right )+\int \frac {x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2} \, dx \\ & = -\left (\frac {1}{5} \int \left (x^2 \left (3+5 x+5 x^2\right )+20 x^3 \log \left (-2 e^x x+x (5+x)^2\right )\right ) \, dx\right )+\int \left (\frac {15 x^4}{25-2 e^x+10 x+x^2}+\frac {8 x^5}{25-2 e^x+10 x+x^2}+\frac {x^6}{25-2 e^x+10 x+x^2}\right ) \, dx \\ & = -\left (\frac {1}{5} \int x^2 \left (3+5 x+5 x^2\right ) \, dx\right )-4 \int x^3 \log \left (-2 e^x x+x (5+x)^2\right ) \, dx+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx \\ & = -x^4 \log \left (-2 e^x x+x (5+x)^2\right )-\frac {1}{5} \int \left (3 x^2+5 x^3+5 x^4\right ) \, dx+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^3 \left (-25-20 x-3 x^2+2 e^x (1+x)\right )}{2 e^x-(5+x)^2} \, dx \\ & = -\frac {x^3}{5}-\frac {x^4}{4}-\frac {x^5}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx+\int \left (x^3 (1+x)-\frac {x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2}\right ) \, dx \\ & = -\frac {x^3}{5}-\frac {x^4}{4}-\frac {x^5}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int x^3 (1+x) \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx-\int \frac {x^4 \left (15+8 x+x^2\right )}{25-2 e^x+10 x+x^2} \, dx \\ & = -\frac {x^3}{5}-\frac {x^4}{4}-\frac {x^5}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right )+8 \int \frac {x^5}{25-2 e^x+10 x+x^2} \, dx+15 \int \frac {x^4}{25-2 e^x+10 x+x^2} \, dx+\int \frac {x^6}{25-2 e^x+10 x+x^2} \, dx+\int \left (x^3+x^4\right ) \, dx-\int \left (\frac {15 x^4}{25-2 e^x+10 x+x^2}+\frac {8 x^5}{25-2 e^x+10 x+x^2}+\frac {x^6}{25-2 e^x+10 x+x^2}\right ) \, dx \\ & = -\frac {x^3}{5}-x^4 \log \left (-2 e^x x+x (5+x)^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.04 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=\frac {1}{5} \left (-x^3-5 x^4 \log \left (x \left (-2 e^x+(5+x)^2\right )\right )\right ) \]

[In]

Integrate[(75*x^2 + 155*x^3 + 103*x^4 + 15*x^5 + E^x*(-6*x^2 - 10*x^3 - 10*x^4) + (500*x^3 - 40*E^x*x^3 + 200*
x^4 + 20*x^5)*Log[25*x - 2*E^x*x + 10*x^2 + x^3])/(-125 + 10*E^x - 50*x - 5*x^2),x]

[Out]

(-x^3 - 5*x^4*Log[x*(-2*E^x + (5 + x)^2)])/5

Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.07

method result size
parallelrisch \(-\ln \left (-x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right ) x^{4}-\frac {x^{3}}{5}\) \(30\)
risch \(-x^{4} \ln \left (x^{2}-2 \,{\mathrm e}^{x}+10 x +25\right )-x^{4} \ln \left (x \right )+\frac {i \pi \,x^{4} \operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right ) \operatorname {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )}{2}-\frac {i \pi \,x^{4} \operatorname {csgn}\left (i x \right ) {\operatorname {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )}^{2}}{2}+\frac {i \pi \,x^{4} \operatorname {csgn}\left (i \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right ) {\operatorname {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )}^{2}}{2}-\frac {i \pi \,x^{4} {\operatorname {csgn}\left (i x \left (-x^{2}+2 \,{\mathrm e}^{x}-10 x -25\right )\right )}^{3}}{2}-\frac {x^{3}}{5}\) \(188\)

[In]

int(((-40*exp(x)*x^3+20*x^5+200*x^4+500*x^3)*ln(-2*exp(x)*x+x^3+10*x^2+25*x)+(-10*x^4-10*x^3-6*x^2)*exp(x)+15*
x^5+103*x^4+155*x^3+75*x^2)/(10*exp(x)-5*x^2-50*x-125),x,method=_RETURNVERBOSE)

[Out]

-ln(-x*(-x^2+2*exp(x)-10*x-25))*x^4-1/5*x^3

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.04 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=-x^{4} \log \left (x^{3} + 10 \, x^{2} - 2 \, x e^{x} + 25 \, x\right ) - \frac {1}{5} \, x^{3} \]

[In]

integrate(((-40*exp(x)*x^3+20*x^5+200*x^4+500*x^3)*log(-2*exp(x)*x+x^3+10*x^2+25*x)+(-10*x^4-10*x^3-6*x^2)*exp
(x)+15*x^5+103*x^4+155*x^3+75*x^2)/(10*exp(x)-5*x^2-50*x-125),x, algorithm="fricas")

[Out]

-x^4*log(x^3 + 10*x^2 - 2*x*e^x + 25*x) - 1/5*x^3

Sympy [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.04 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=- x^{4} \log {\left (x^{3} + 10 x^{2} - 2 x e^{x} + 25 x \right )} - \frac {x^{3}}{5} \]

[In]

integrate(((-40*exp(x)*x**3+20*x**5+200*x**4+500*x**3)*ln(-2*exp(x)*x+x**3+10*x**2+25*x)+(-10*x**4-10*x**3-6*x
**2)*exp(x)+15*x**5+103*x**4+155*x**3+75*x**2)/(10*exp(x)-5*x**2-50*x-125),x)

[Out]

-x**4*log(x**3 + 10*x**2 - 2*x*exp(x) + 25*x) - x**3/5

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.11 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=-x^{4} \log \left (x^{2} + 10 \, x - 2 \, e^{x} + 25\right ) - x^{4} \log \left (x\right ) - \frac {1}{5} \, x^{3} \]

[In]

integrate(((-40*exp(x)*x^3+20*x^5+200*x^4+500*x^3)*log(-2*exp(x)*x+x^3+10*x^2+25*x)+(-10*x^4-10*x^3-6*x^2)*exp
(x)+15*x^5+103*x^4+155*x^3+75*x^2)/(10*exp(x)-5*x^2-50*x-125),x, algorithm="maxima")

[Out]

-x^4*log(x^2 + 10*x - 2*e^x + 25) - x^4*log(x) - 1/5*x^3

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.04 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=-x^{4} \log \left (x^{3} + 10 \, x^{2} - 2 \, x e^{x} + 25 \, x\right ) - \frac {1}{5} \, x^{3} \]

[In]

integrate(((-40*exp(x)*x^3+20*x^5+200*x^4+500*x^3)*log(-2*exp(x)*x+x^3+10*x^2+25*x)+(-10*x^4-10*x^3-6*x^2)*exp
(x)+15*x^5+103*x^4+155*x^3+75*x^2)/(10*exp(x)-5*x^2-50*x-125),x, algorithm="giac")

[Out]

-x^4*log(x^3 + 10*x^2 - 2*x*e^x + 25*x) - 1/5*x^3

Mupad [B] (verification not implemented)

Time = 10.96 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.04 \[ \int \frac {75 x^2+155 x^3+103 x^4+15 x^5+e^x \left (-6 x^2-10 x^3-10 x^4\right )+\left (500 x^3-40 e^x x^3+200 x^4+20 x^5\right ) \log \left (25 x-2 e^x x+10 x^2+x^3\right )}{-125+10 e^x-50 x-5 x^2} \, dx=-x^4\,\ln \left (25\,x-2\,x\,{\mathrm {e}}^x+10\,x^2+x^3\right )-\frac {x^3}{5} \]

[In]

int(-(75*x^2 - exp(x)*(6*x^2 + 10*x^3 + 10*x^4) + 155*x^3 + 103*x^4 + 15*x^5 + log(25*x - 2*x*exp(x) + 10*x^2
+ x^3)*(500*x^3 - 40*x^3*exp(x) + 200*x^4 + 20*x^5))/(50*x - 10*exp(x) + 5*x^2 + 125),x)

[Out]

- x^4*log(25*x - 2*x*exp(x) + 10*x^2 + x^3) - x^3/5