\(\int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} (-5 e^{5/x}-x+2 x^2+e^x x^2)}{x^3} \, dx\) [5114]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 71, antiderivative size = 33 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=7-e^{e^{5/x}} \left (2-\frac {e^{-2+e^x+2 x}}{x}\right )-x \]

[Out]

7-exp(exp(5/x))*(2-exp(exp(x)+2*x-2)/x)-x

Rubi [F]

\[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=\int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx \]

[In]

Int[(10*E^(E^(5/x) + 5/x)*x - x^3 + E^(-2 + E^(5/x) + E^x + 2*x)*(-5*E^(5/x) - x + 2*x^2 + E^x*x^2))/x^3,x]

[Out]

-2*E^E^(5/x) - x - 5*Defer[Int][E^(-2 + E^(5/x) + E^x + 5/x + 2*x)/x^3, x] - Defer[Int][E^(-2 + E^(5/x) + E^x
+ 2*x)/x^2, x] + 2*Defer[Int][E^(-2 + E^(5/x) + E^x + 2*x)/x, x] + Defer[Int][E^(-2 + E^(5/x) + E^x + 3*x)/x,
x]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {e^{-2+e^{5/x}+e^x+3 x}}{x}-\frac {-10 e^{e^{5/x}+\frac {5}{x}}+x^2}{x^2}+\frac {e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2\right )}{x^3}\right ) \, dx \\ & = \int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx-\int \frac {-10 e^{e^{5/x}+\frac {5}{x}}+x^2}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2\right )}{x^3} \, dx \\ & = -\int \left (1-\frac {10 e^{e^{5/x}+\frac {5}{x}}}{x^2}\right ) \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx+\int \left (-\frac {5 e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3}+\frac {e^{-2+e^{5/x}+e^x+2 x} (-1+2 x)}{x^2}\right ) \, dx \\ & = -x-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx+10 \int \frac {e^{e^{5/x}+\frac {5}{x}}}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+2 x} (-1+2 x)}{x^2} \, dx \\ & = -x-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx-10 \text {Subst}\left (\int e^{e^{5 x}+5 x} \, dx,x,\frac {1}{x}\right )+\int \left (-\frac {e^{-2+e^{5/x}+e^x+2 x}}{x^2}+\frac {2 e^{-2+e^{5/x}+e^x+2 x}}{x}\right ) \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx \\ & = -x+2 \int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x} \, dx-2 \text {Subst}\left (\int e^x \, dx,x,e^{5/x}\right )-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx-\int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx \\ & = -2 e^{e^{5/x}}-x+2 \int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x} \, dx-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx-\int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.09 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=-2 e^{e^{5/x}}+\frac {e^{-2+e^{5/x}+e^x+2 x}}{x}-x \]

[In]

Integrate[(10*E^(E^(5/x) + 5/x)*x - x^3 + E^(-2 + E^(5/x) + E^x + 2*x)*(-5*E^(5/x) - x + 2*x^2 + E^x*x^2))/x^3
,x]

[Out]

-2*E^E^(5/x) + E^(-2 + E^(5/x) + E^x + 2*x)/x - x

Maple [A] (verified)

Time = 0.88 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.97

method result size
risch \(-x -2 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}}+\frac {{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}+{\mathrm e}^{x}+2 x -2}}{x}\) \(32\)
parallelrisch \(-\frac {x^{2}+2 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}} x -{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}} {\mathrm e}^{{\mathrm e}^{x}+2 x -2}}{x}\) \(37\)

[In]

int(((exp(x)*x^2-5*exp(5/x)+2*x^2-x)*exp(exp(5/x))*exp(exp(x)+2*x-2)+10*x*exp(5/x)*exp(exp(5/x))-x^3)/x^3,x,me
thod=_RETURNVERBOSE)

[Out]

-x-2*exp(exp(5/x))+1/x*exp(exp(5/x)+exp(x)+2*x-2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 61 vs. \(2 (27) = 54\).

Time = 0.24 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.85 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=-\frac {{\left (x^{2} e^{\frac {5}{x}} + 2 \, x e^{\left (\frac {x e^{\frac {5}{x}} + 5}{x}\right )} - e^{\left (2 \, x + \frac {5}{x} + e^{x} + e^{\frac {5}{x}} - 2\right )}\right )} e^{\left (-\frac {5}{x}\right )}}{x} \]

[In]

integrate(((exp(x)*x^2-5*exp(5/x)+2*x^2-x)*exp(exp(5/x))*exp(exp(x)+2*x-2)+10*x*exp(5/x)*exp(exp(5/x))-x^3)/x^
3,x, algorithm="fricas")

[Out]

-(x^2*e^(5/x) + 2*x*e^((x*e^(5/x) + 5)/x) - e^(2*x + 5/x + e^x + e^(5/x) - 2))*e^(-5/x)/x

Sympy [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.82 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=- x - 2 e^{e^{\frac {5}{x}}} + \frac {e^{2 x + e^{x} - 2} e^{e^{\frac {5}{x}}}}{x} \]

[In]

integrate(((exp(x)*x**2-5*exp(5/x)+2*x**2-x)*exp(exp(5/x))*exp(exp(x)+2*x-2)+10*x*exp(5/x)*exp(exp(5/x))-x**3)
/x**3,x)

[Out]

-x - 2*exp(exp(5/x)) + exp(2*x + exp(x) - 2)*exp(exp(5/x))/x

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.94 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=-x + \frac {e^{\left (2 \, x + e^{x} + e^{\frac {5}{x}} - 2\right )}}{x} - 2 \, e^{\left (e^{\frac {5}{x}}\right )} \]

[In]

integrate(((exp(x)*x^2-5*exp(5/x)+2*x^2-x)*exp(exp(5/x))*exp(exp(x)+2*x-2)+10*x*exp(5/x)*exp(exp(5/x))-x^3)/x^
3,x, algorithm="maxima")

[Out]

-x + e^(2*x + e^x + e^(5/x) - 2)/x - 2*e^(e^(5/x))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (27) = 54\).

Time = 0.33 (sec) , antiderivative size = 69, normalized size of antiderivative = 2.09 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=-\frac {{\left (x^{2} e^{\frac {5}{x}} + 2 \, x e^{\left (\frac {x e^{\frac {5}{x}} + 5}{x}\right )} - e^{\left (\frac {2 \, x^{2} + x e^{x} + x e^{\frac {5}{x}} - 2 \, x + 5}{x}\right )}\right )} e^{\left (-\frac {5}{x}\right )}}{x} \]

[In]

integrate(((exp(x)*x^2-5*exp(5/x)+2*x^2-x)*exp(exp(5/x))*exp(exp(x)+2*x-2)+10*x*exp(5/x)*exp(exp(5/x))-x^3)/x^
3,x, algorithm="giac")

[Out]

-(x^2*e^(5/x) + 2*x*e^((x*e^(5/x) + 5)/x) - e^((2*x^2 + x*e^x + x*e^(5/x) - 2*x + 5)/x))*e^(-5/x)/x

Mupad [B] (verification not implemented)

Time = 12.92 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.91 \[ \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx=-x-\frac {{\mathrm {e}}^{{\mathrm {e}}^{5/x}}\,\left (2\,x-{\mathrm {e}}^{2\,x+{\mathrm {e}}^x-2}\right )}{x} \]

[In]

int(-(x^3 - 10*x*exp(exp(5/x))*exp(5/x) + exp(exp(5/x))*exp(2*x + exp(x) - 2)*(x + 5*exp(5/x) - x^2*exp(x) - 2
*x^2))/x^3,x)

[Out]

- x - (exp(exp(5/x))*(2*x - exp(2*x + exp(x) - 2)))/x