\(\int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx\) [6120]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [C] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 15 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {-4+x+4 \left (e^3+x\right )}{\log ^2(x)} \]

[Out]

(4*exp(3)+5*x-4)/ln(x)^2

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.40, number of steps used = 12, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {6873, 6874, 2395, 2334, 2335, 2339, 30} \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {5 x}{\log ^2(x)}-\frac {4 \left (1-e^3\right )}{\log ^2(x)} \]

[In]

Int[(8 - 8*E^3 - 10*x + 5*x*Log[x])/(x*Log[x]^3),x]

[Out]

(-4*(1 - E^3))/Log[x]^2 + (5*x)/Log[x]^2

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[x*((a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2335

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2339

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2395

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {8 \left (1-e^3\right )-10 x+5 x \log (x)}{x \log ^3(x)} \, dx \\ & = \int \left (-\frac {2 \left (-4+4 e^3+5 x\right )}{x \log ^3(x)}+\frac {5}{\log ^2(x)}\right ) \, dx \\ & = -\left (2 \int \frac {-4+4 e^3+5 x}{x \log ^3(x)} \, dx\right )+5 \int \frac {1}{\log ^2(x)} \, dx \\ & = -\frac {5 x}{\log (x)}-2 \int \left (\frac {5}{\log ^3(x)}+\frac {4 \left (-1+e^3\right )}{x \log ^3(x)}\right ) \, dx+5 \int \frac {1}{\log (x)} \, dx \\ & = -\frac {5 x}{\log (x)}+5 \text {li}(x)-10 \int \frac {1}{\log ^3(x)} \, dx+\left (8 \left (1-e^3\right )\right ) \int \frac {1}{x \log ^3(x)} \, dx \\ & = \frac {5 x}{\log ^2(x)}-\frac {5 x}{\log (x)}+5 \text {li}(x)-5 \int \frac {1}{\log ^2(x)} \, dx+\left (8 \left (1-e^3\right )\right ) \text {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (x)\right ) \\ & = -\frac {4 \left (1-e^3\right )}{\log ^2(x)}+\frac {5 x}{\log ^2(x)}+5 \text {li}(x)-5 \int \frac {1}{\log (x)} \, dx \\ & = -\frac {4 \left (1-e^3\right )}{\log ^2(x)}+\frac {5 x}{\log ^2(x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.53 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=-\frac {4}{\log ^2(x)}+\frac {4 e^3}{\log ^2(x)}+\frac {5 x}{\log ^2(x)} \]

[In]

Integrate[(8 - 8*E^3 - 10*x + 5*x*Log[x])/(x*Log[x]^3),x]

[Out]

-4/Log[x]^2 + (4*E^3)/Log[x]^2 + (5*x)/Log[x]^2

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 15, normalized size of antiderivative = 1.00

method result size
norman \(\frac {4 \,{\mathrm e}^{3}+5 x -4}{\ln \left (x \right )^{2}}\) \(15\)
risch \(\frac {4 \,{\mathrm e}^{3}+5 x -4}{\ln \left (x \right )^{2}}\) \(15\)
parallelrisch \(\frac {4 \,{\mathrm e}^{3}+5 x -4}{\ln \left (x \right )^{2}}\) \(15\)
default \(\frac {4 \,{\mathrm e}^{3}}{\ln \left (x \right )^{2}}+\frac {5 x}{\ln \left (x \right )^{2}}-\frac {4}{\ln \left (x \right )^{2}}\) \(23\)
parts \(\frac {4 \,{\mathrm e}^{3}}{\ln \left (x \right )^{2}}+\frac {5 x}{\ln \left (x \right )^{2}}-\frac {4}{\ln \left (x \right )^{2}}\) \(23\)

[In]

int((5*x*ln(x)-8*exp(3)-10*x+8)/x/ln(x)^3,x,method=_RETURNVERBOSE)

[Out]

(4*exp(3)+5*x-4)/ln(x)^2

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.93 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {5 \, x + 4 \, e^{3} - 4}{\log \left (x\right )^{2}} \]

[In]

integrate((5*x*log(x)-8*exp(3)-10*x+8)/x/log(x)^3,x, algorithm="fricas")

[Out]

(5*x + 4*e^3 - 4)/log(x)^2

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.93 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {5 x - 4 + 4 e^{3}}{\log {\left (x \right )}^{2}} \]

[In]

integrate((5*x*ln(x)-8*exp(3)-10*x+8)/x/ln(x)**3,x)

[Out]

(5*x - 4 + 4*exp(3))/log(x)**2

Maxima [C] (verification not implemented)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.21 (sec) , antiderivative size = 31, normalized size of antiderivative = 2.07 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {4 \, e^{3}}{\log \left (x\right )^{2}} - \frac {4}{\log \left (x\right )^{2}} + 5 \, \Gamma \left (-1, -\log \left (x\right )\right ) + 10 \, \Gamma \left (-2, -\log \left (x\right )\right ) \]

[In]

integrate((5*x*log(x)-8*exp(3)-10*x+8)/x/log(x)^3,x, algorithm="maxima")

[Out]

4*e^3/log(x)^2 - 4/log(x)^2 + 5*gamma(-1, -log(x)) + 10*gamma(-2, -log(x))

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.93 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {5 \, x + 4 \, e^{3} - 4}{\log \left (x\right )^{2}} \]

[In]

integrate((5*x*log(x)-8*exp(3)-10*x+8)/x/log(x)^3,x, algorithm="giac")

[Out]

(5*x + 4*e^3 - 4)/log(x)^2

Mupad [B] (verification not implemented)

Time = 10.97 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.93 \[ \int \frac {8-8 e^3-10 x+5 x \log (x)}{x \log ^3(x)} \, dx=\frac {5\,x+4\,{\mathrm {e}}^3-4}{{\ln \left (x\right )}^2} \]

[In]

int(-(10*x + 8*exp(3) - 5*x*log(x) - 8)/(x*log(x)^3),x)

[Out]

(5*x + 4*exp(3) - 4)/log(x)^2