\(\int \frac {e^{-2 x} (e^5 (3 x^3-2 x^4)+e^{2 x} (2+e^5 (-x-2 x^2)))}{2 x} \, dx\) [6270]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 49, antiderivative size = 30 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=-\frac {1}{2} e^5 \left (x+e^{-2 x} \left (e^{2 x}-x\right ) x^2\right )+\log (x) \]

[Out]

ln(x)-1/2*exp(5)*(x+(exp(x)^2-x)/exp(x)^2*x^2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {12, 6820, 2227, 2207, 2225} \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=\frac {1}{2} e^{5-2 x} x^3-\frac {1}{8} e^5 (2 x+1)^2+\log (x) \]

[In]

Int[(E^5*(3*x^3 - 2*x^4) + E^(2*x)*(2 + E^5*(-x - 2*x^2)))/(2*E^(2*x)*x),x]

[Out]

(E^(5 - 2*x)*x^3)/2 - (E^5*(1 + 2*x)^2)/8 + Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2227

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !TrueQ[$UseGamma]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{x} \, dx \\ & = \frac {1}{2} \int \left (\frac {2}{x}+e^{5-2 x} (3-2 x) x^2-e^5 (1+2 x)\right ) \, dx \\ & = -\frac {1}{8} e^5 (1+2 x)^2+\log (x)+\frac {1}{2} \int e^{5-2 x} (3-2 x) x^2 \, dx \\ & = -\frac {1}{8} e^5 (1+2 x)^2+\log (x)+\frac {1}{2} \int \left (3 e^{5-2 x} x^2-2 e^{5-2 x} x^3\right ) \, dx \\ & = -\frac {1}{8} e^5 (1+2 x)^2+\log (x)+\frac {3}{2} \int e^{5-2 x} x^2 \, dx-\int e^{5-2 x} x^3 \, dx \\ & = -\frac {3}{4} e^{5-2 x} x^2+\frac {1}{2} e^{5-2 x} x^3-\frac {1}{8} e^5 (1+2 x)^2+\log (x)+\frac {3}{2} \int e^{5-2 x} x \, dx-\frac {3}{2} \int e^{5-2 x} x^2 \, dx \\ & = -\frac {3}{4} e^{5-2 x} x+\frac {1}{2} e^{5-2 x} x^3-\frac {1}{8} e^5 (1+2 x)^2+\log (x)+\frac {3}{4} \int e^{5-2 x} \, dx-\frac {3}{2} \int e^{5-2 x} x \, dx \\ & = -\frac {3}{8} e^{5-2 x}+\frac {1}{2} e^{5-2 x} x^3-\frac {1}{8} e^5 (1+2 x)^2+\log (x)-\frac {3}{4} \int e^{5-2 x} \, dx \\ & = \frac {1}{2} e^{5-2 x} x^3-\frac {1}{8} e^5 (1+2 x)^2+\log (x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.17 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=-\frac {e^5 x}{2}-\frac {e^5 x^2}{2}+\frac {1}{2} e^{5-2 x} x^3+\log (x) \]

[In]

Integrate[(E^5*(3*x^3 - 2*x^4) + E^(2*x)*(2 + E^5*(-x - 2*x^2)))/(2*E^(2*x)*x),x]

[Out]

-1/2*(E^5*x) - (E^5*x^2)/2 + (E^(5 - 2*x)*x^3)/2 + Log[x]

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.90

method result size
risch \(-\frac {x^{2} {\mathrm e}^{5}}{2}-\frac {x \,{\mathrm e}^{5}}{2}+\ln \left (x \right )+\frac {x^{3} {\mathrm e}^{5-2 x}}{2}\) \(27\)
parts \(-\frac {x^{2} {\mathrm e}^{5}}{2}-\frac {x \,{\mathrm e}^{5}}{2}+\ln \left (x \right )+\frac {x^{3} {\mathrm e}^{-2 x} {\mathrm e}^{5}}{2}\) \(27\)
norman \(\left (\frac {x^{3} {\mathrm e}^{5}}{2}-\frac {x \,{\mathrm e}^{5} {\mathrm e}^{2 x}}{2}-\frac {{\mathrm e}^{5} {\mathrm e}^{2 x} x^{2}}{2}\right ) {\mathrm e}^{-2 x}+\ln \left (x \right )\) \(37\)
parallelrisch \(\frac {\left (-{\mathrm e}^{5} {\mathrm e}^{2 x} x^{2}+x^{3} {\mathrm e}^{5}-x \,{\mathrm e}^{5} {\mathrm e}^{2 x}+2 \,{\mathrm e}^{2 x} \ln \left (x \right )\right ) {\mathrm e}^{-2 x}}{2}\) \(42\)
default \(\ln \left (x \right )-\frac {x^{2} {\mathrm e}^{5}}{2}+\frac {3 \,{\mathrm e}^{5} \left (-\frac {x^{2} {\mathrm e}^{-2 x}}{2}-\frac {{\mathrm e}^{-2 x} x}{2}-\frac {{\mathrm e}^{-2 x}}{4}\right )}{2}-{\mathrm e}^{5} \left (-\frac {x^{3} {\mathrm e}^{-2 x}}{2}-\frac {3 x^{2} {\mathrm e}^{-2 x}}{4}-\frac {3 \,{\mathrm e}^{-2 x} x}{4}-\frac {3 \,{\mathrm e}^{-2 x}}{8}\right )-\frac {x \,{\mathrm e}^{5}}{2}\) \(79\)

[In]

int(1/2*(((-2*x^2-x)*exp(5)+2)*exp(x)^2+(-2*x^4+3*x^3)*exp(5))/x/exp(x)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*x^2*exp(5)-1/2*x*exp(5)+ln(x)+1/2*x^3*exp(5-2*x)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.13 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=\frac {1}{2} \, {\left (x^{3} e^{5} - {\left (x^{2} + x\right )} e^{\left (2 \, x + 5\right )} + 2 \, e^{\left (2 \, x\right )} \log \left (x\right )\right )} e^{\left (-2 \, x\right )} \]

[In]

integrate(1/2*(((-2*x^2-x)*exp(5)+2)*exp(x)^2+(-2*x^4+3*x^3)*exp(5))/x/exp(x)^2,x, algorithm="fricas")

[Out]

1/2*(x^3*e^5 - (x^2 + x)*e^(2*x + 5) + 2*e^(2*x)*log(x))*e^(-2*x)

Sympy [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.03 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=\frac {x^{3} e^{5} e^{- 2 x}}{2} - \frac {x^{2} e^{5}}{2} - \frac {x e^{5}}{2} + \log {\left (x \right )} \]

[In]

integrate(1/2*(((-2*x**2-x)*exp(5)+2)*exp(x)**2+(-2*x**4+3*x**3)*exp(5))/x/exp(x)**2,x)

[Out]

x**3*exp(5)*exp(-2*x)/2 - x**2*exp(5)/2 - x*exp(5)/2 + log(x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 66 vs. \(2 (27) = 54\).

Time = 0.18 (sec) , antiderivative size = 66, normalized size of antiderivative = 2.20 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=-\frac {1}{2} \, x^{2} e^{5} - \frac {1}{2} \, x e^{5} + \frac {1}{8} \, {\left (4 \, x^{3} e^{5} + 6 \, x^{2} e^{5} + 6 \, x e^{5} + 3 \, e^{5}\right )} e^{\left (-2 \, x\right )} - \frac {3}{8} \, {\left (2 \, x^{2} e^{5} + 2 \, x e^{5} + e^{5}\right )} e^{\left (-2 \, x\right )} + \log \left (x\right ) \]

[In]

integrate(1/2*(((-2*x^2-x)*exp(5)+2)*exp(x)^2+(-2*x^4+3*x^3)*exp(5))/x/exp(x)^2,x, algorithm="maxima")

[Out]

-1/2*x^2*e^5 - 1/2*x*e^5 + 1/8*(4*x^3*e^5 + 6*x^2*e^5 + 6*x*e^5 + 3*e^5)*e^(-2*x) - 3/8*(2*x^2*e^5 + 2*x*e^5 +
 e^5)*e^(-2*x) + log(x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.93 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=\frac {1}{2} \, x^{3} e^{\left (-2 \, x + 5\right )} - \frac {1}{2} \, x^{2} e^{5} - \frac {1}{2} \, x e^{5} + \log \left (2 \, x\right ) \]

[In]

integrate(1/2*(((-2*x^2-x)*exp(5)+2)*exp(x)^2+(-2*x^4+3*x^3)*exp(5))/x/exp(x)^2,x, algorithm="giac")

[Out]

1/2*x^3*e^(-2*x + 5) - 1/2*x^2*e^5 - 1/2*x*e^5 + log(2*x)

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.87 \[ \int \frac {e^{-2 x} \left (e^5 \left (3 x^3-2 x^4\right )+e^{2 x} \left (2+e^5 \left (-x-2 x^2\right )\right )\right )}{2 x} \, dx=\ln \left (x\right )-\frac {x\,{\mathrm {e}}^5}{2}-\frac {x^2\,{\mathrm {e}}^5}{2}+\frac {x^3\,{\mathrm {e}}^{5-2\,x}}{2} \]

[In]

int((exp(-2*x)*((exp(5)*(3*x^3 - 2*x^4))/2 - (exp(2*x)*(exp(5)*(x + 2*x^2) - 2))/2))/x,x)

[Out]

log(x) - (x*exp(5))/2 - (x^2*exp(5))/2 + (x^3*exp(5 - 2*x))/2