\(\int \frac {-96-160 x-32 x^2+32 x^3+(-96+256 x+192 x^2-128 x^3+32 x^4) \log (x)+(288 x-288 x^2-32 x^3+32 x^4) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx\) [6403]

   Optimal result
   Rubi [C] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 78, antiderivative size = 20 \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=-4+\left (4+4 x \left (1-\frac {4}{1+x}\right ) \log (x)\right )^2 \]

[Out]

(4*ln(x)*x*(1-4/(1+x))+4)^2-4

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.35 (sec) , antiderivative size = 89, normalized size of antiderivative = 4.45, number of steps used = 29, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.218, Rules used = {6820, 12, 6874, 45, 2404, 2332, 2341, 2351, 31, 2354, 2438, 2333, 2342, 2356, 2389, 2379, 2355} \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=-512 \operatorname {PolyLog}\left (2,-\frac {1}{x}\right )-512 \operatorname {PolyLog}(2,-x)+16 x^2 \log ^2(x)-128 x \log ^2(x)+\frac {640 x \log ^2(x)}{x+1}+\frac {256 \log ^2(x)}{(x+1)^2}+32 x \log (x)+512 \log \left (\frac {1}{x}+1\right ) \log (x)-512 \log (x+1) \log (x)-\frac {128 x \log (x)}{x+1} \]

[In]

Int[(-96 - 160*x - 32*x^2 + 32*x^3 + (-96 + 256*x + 192*x^2 - 128*x^3 + 32*x^4)*Log[x] + (288*x - 288*x^2 - 32
*x^3 + 32*x^4)*Log[x]^2)/(1 + 3*x + 3*x^2 + x^3),x]

[Out]

32*x*Log[x] - (128*x*Log[x])/(1 + x) + 512*Log[1 + x^(-1)]*Log[x] - 128*x*Log[x]^2 + 16*x^2*Log[x]^2 + (256*Lo
g[x]^2)/(1 + x)^2 + (640*x*Log[x]^2)/(1 + x) - 512*Log[x]*Log[1 + x] - 512*PolyLog[2, -x^(-1)] - 512*PolyLog[2
, -x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2333

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2342

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Lo
g[c*x^n])^p/(d*(m + 1))), x] - Dist[b*n*(p/(m + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2351

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[x*(d + e*x^r)^(q +
 1)*((a + b*Log[c*x^n])/d), x] - Dist[b*(n/d), Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]

Rule 2354

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 + e*(x/d)]*((a +
b*Log[c*x^n])^p/e), x] - Dist[b*n*(p/e), Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]

Rule 2355

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_))^2, x_Symbol] :> Simp[x*((a + b*Log[c*x^n])
^p/(d*(d + e*x))), x] - Dist[b*n*(p/d), Int[(a + b*Log[c*x^n])^(p - 1)/(d + e*x), x], x] /; FreeQ[{a, b, c, d,
 e, n, p}, x] && GtQ[p, 0]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)
*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] - Dist[b*n*(p/(e*(q + 1))), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2379

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Simp[(-Log[1 +
d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)), x] + Dist[b*n*(p/(d*r)), Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^
(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]

Rule 2389

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/(x_), x_Symbol] :> Dist[1/d, Int[(d
 + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x), x], x] - Dist[e/d, Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /; F
reeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]

Rule 2404

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {32 \left ((-3+x) (1+x)^2+\left (-3+8 x+6 x^2-4 x^3+x^4\right ) \log (x)+x \left (9-9 x-x^2+x^3\right ) \log ^2(x)\right )}{(1+x)^3} \, dx \\ & = 32 \int \frac {(-3+x) (1+x)^2+\left (-3+8 x+6 x^2-4 x^3+x^4\right ) \log (x)+x \left (9-9 x-x^2+x^3\right ) \log ^2(x)}{(1+x)^3} \, dx \\ & = 32 \int \left (\frac {-3+x}{1+x}+\frac {\left (-3+11 x-5 x^2+x^3\right ) \log (x)}{(1+x)^2}+\frac {(-3+x) (-1+x) x (3+x) \log ^2(x)}{(1+x)^3}\right ) \, dx \\ & = 32 \int \frac {-3+x}{1+x} \, dx+32 \int \frac {\left (-3+11 x-5 x^2+x^3\right ) \log (x)}{(1+x)^2} \, dx+32 \int \frac {(-3+x) (-1+x) x (3+x) \log ^2(x)}{(1+x)^3} \, dx \\ & = 32 \int \left (1-\frac {4}{1+x}\right ) \, dx+32 \int \left (-7 \log (x)+x \log (x)-\frac {20 \log (x)}{(1+x)^2}+\frac {24 \log (x)}{1+x}\right ) \, dx+32 \int \left (-4 \log ^2(x)+x \log ^2(x)-\frac {16 \log ^2(x)}{(1+x)^3}+\frac {20 \log ^2(x)}{(1+x)^2}\right ) \, dx \\ & = 32 x-128 \log (1+x)+32 \int x \log (x) \, dx+32 \int x \log ^2(x) \, dx-128 \int \log ^2(x) \, dx-224 \int \log (x) \, dx-512 \int \frac {\log ^2(x)}{(1+x)^3} \, dx-640 \int \frac {\log (x)}{(1+x)^2} \, dx+640 \int \frac {\log ^2(x)}{(1+x)^2} \, dx+768 \int \frac {\log (x)}{1+x} \, dx \\ & = 256 x-8 x^2-224 x \log (x)+16 x^2 \log (x)-\frac {640 x \log (x)}{1+x}-128 x \log ^2(x)+16 x^2 \log ^2(x)+\frac {256 \log ^2(x)}{(1+x)^2}+\frac {640 x \log ^2(x)}{1+x}-128 \log (1+x)+768 \log (x) \log (1+x)-32 \int x \log (x) \, dx+256 \int \log (x) \, dx-512 \int \frac {\log (x)}{x (1+x)^2} \, dx+640 \int \frac {1}{1+x} \, dx-768 \int \frac {\log (1+x)}{x} \, dx-1280 \int \frac {\log (x)}{1+x} \, dx \\ & = 32 x \log (x)-\frac {640 x \log (x)}{1+x}-128 x \log ^2(x)+16 x^2 \log ^2(x)+\frac {256 \log ^2(x)}{(1+x)^2}+\frac {640 x \log ^2(x)}{1+x}+512 \log (1+x)-512 \log (x) \log (1+x)+768 \text {Li}_2(-x)+512 \int \frac {\log (x)}{(1+x)^2} \, dx-512 \int \frac {\log (x)}{x (1+x)} \, dx+1280 \int \frac {\log (1+x)}{x} \, dx \\ & = 32 x \log (x)-\frac {128 x \log (x)}{1+x}+512 \log \left (1+\frac {1}{x}\right ) \log (x)-128 x \log ^2(x)+16 x^2 \log ^2(x)+\frac {256 \log ^2(x)}{(1+x)^2}+\frac {640 x \log ^2(x)}{1+x}+512 \log (1+x)-512 \log (x) \log (1+x)-512 \text {Li}_2(-x)-512 \int \frac {1}{1+x} \, dx-512 \int \frac {\log \left (1+\frac {1}{x}\right )}{x} \, dx \\ & = 32 x \log (x)-\frac {128 x \log (x)}{1+x}+512 \log \left (1+\frac {1}{x}\right ) \log (x)-128 x \log ^2(x)+16 x^2 \log ^2(x)+\frac {256 \log ^2(x)}{(1+x)^2}+\frac {640 x \log ^2(x)}{1+x}-512 \log (x) \log (1+x)-512 \text {Li}_2\left (-\frac {1}{x}\right )-512 \text {Li}_2(-x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.30 \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=\frac {16 (-3+x) x \log (x) (2 (1+x)+(-3+x) x \log (x))}{(1+x)^2} \]

[In]

Integrate[(-96 - 160*x - 32*x^2 + 32*x^3 + (-96 + 256*x + 192*x^2 - 128*x^3 + 32*x^4)*Log[x] + (288*x - 288*x^
2 - 32*x^3 + 32*x^4)*Log[x]^2)/(1 + 3*x + 3*x^2 + x^3),x]

[Out]

(16*(-3 + x)*x*Log[x]*(2*(1 + x) + (-3 + x)*x*Log[x]))/(1 + x)^2

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(47\) vs. \(2(20)=40\).

Time = 0.16 (sec) , antiderivative size = 48, normalized size of antiderivative = 2.40

method result size
risch \(\frac {16 x^{2} \left (x^{2}-6 x +9\right ) \ln \left (x \right )^{2}}{x^{2}+2 x +1}+\frac {32 \left (x^{2}+x +4\right ) \ln \left (x \right )}{1+x}-128 \ln \left (x \right )\) \(48\)
norman \(\frac {-96 x \ln \left (x \right )-64 x^{2} \ln \left (x \right )+144 x^{2} \ln \left (x \right )^{2}+32 x^{3} \ln \left (x \right )-96 x^{3} \ln \left (x \right )^{2}+16 x^{4} \ln \left (x \right )^{2}}{\left (1+x \right )^{2}}\) \(54\)
parallelrisch \(\frac {-96 x \ln \left (x \right )-64 x^{2} \ln \left (x \right )+144 x^{2} \ln \left (x \right )^{2}+32 x^{3} \ln \left (x \right )-96 x^{3} \ln \left (x \right )^{2}+16 x^{4} \ln \left (x \right )^{2}}{x^{2}+2 x +1}\) \(59\)

[In]

int(((32*x^4-32*x^3-288*x^2+288*x)*ln(x)^2+(32*x^4-128*x^3+192*x^2+256*x-96)*ln(x)+32*x^3-32*x^2-160*x-96)/(x^
3+3*x^2+3*x+1),x,method=_RETURNVERBOSE)

[Out]

16*x^2*(x^2-6*x+9)/(x^2+2*x+1)*ln(x)^2+32*(x^2+x+4)/(1+x)*ln(x)-128*ln(x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (21) = 42\).

Time = 0.25 (sec) , antiderivative size = 48, normalized size of antiderivative = 2.40 \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=\frac {16 \, {\left ({\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} \log \left (x\right )^{2} + 2 \, {\left (x^{3} - 2 \, x^{2} - 3 \, x\right )} \log \left (x\right )\right )}}{x^{2} + 2 \, x + 1} \]

[In]

integrate(((32*x^4-32*x^3-288*x^2+288*x)*log(x)^2+(32*x^4-128*x^3+192*x^2+256*x-96)*log(x)+32*x^3-32*x^2-160*x
-96)/(x^3+3*x^2+3*x+1),x, algorithm="fricas")

[Out]

16*((x^4 - 6*x^3 + 9*x^2)*log(x)^2 + 2*(x^3 - 2*x^2 - 3*x)*log(x))/(x^2 + 2*x + 1)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 49 vs. \(2 (17) = 34\).

Time = 0.16 (sec) , antiderivative size = 49, normalized size of antiderivative = 2.45 \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=- 128 \log {\left (x \right )} + \frac {\left (16 x^{4} - 96 x^{3} + 144 x^{2}\right ) \log {\left (x \right )}^{2}}{x^{2} + 2 x + 1} + \frac {\left (32 x^{2} + 32 x + 128\right ) \log {\left (x \right )}}{x + 1} \]

[In]

integrate(((32*x**4-32*x**3-288*x**2+288*x)*ln(x)**2+(32*x**4-128*x**3+192*x**2+256*x-96)*ln(x)+32*x**3-32*x**
2-160*x-96)/(x**3+3*x**2+3*x+1),x)

[Out]

-128*log(x) + (16*x**4 - 96*x**3 + 144*x**2)*log(x)**2/(x**2 + 2*x + 1) + (32*x**2 + 32*x + 128)*log(x)/(x + 1
)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 173 vs. \(2 (21) = 42\).

Time = 0.22 (sec) , antiderivative size = 173, normalized size of antiderivative = 8.65 \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=32 \, x - \frac {128 \, {\left (2 \, x + 1\right )} \log \left (x\right )}{x^{2} + 2 \, x + 1} - \frac {16 \, {\left (2 \, x^{3} - {\left (x^{4} - 6 \, x^{3} + 9 \, x^{2}\right )} \log \left (x\right )^{2} + 4 \, x^{2} - {\left (2 \, x^{3} - 9 \, x^{2}\right )} \log \left (x\right ) - 9 \, x - 11\right )}}{x^{2} + 2 \, x + 1} - \frac {16 \, {\left (6 \, x + 5\right )}}{x^{2} + 2 \, x + 1} - \frac {16 \, {\left (4 \, x + 3\right )}}{x^{2} + 2 \, x + 1} + \frac {80 \, {\left (2 \, x + 1\right )}}{x^{2} + 2 \, x + 1} + \frac {48 \, \log \left (x\right )}{x^{2} + 2 \, x + 1} + \frac {48}{x^{2} + 2 \, x + 1} - \frac {176}{x + 1} + 80 \, \log \left (x\right ) \]

[In]

integrate(((32*x^4-32*x^3-288*x^2+288*x)*log(x)^2+(32*x^4-128*x^3+192*x^2+256*x-96)*log(x)+32*x^3-32*x^2-160*x
-96)/(x^3+3*x^2+3*x+1),x, algorithm="maxima")

[Out]

32*x - 128*(2*x + 1)*log(x)/(x^2 + 2*x + 1) - 16*(2*x^3 - (x^4 - 6*x^3 + 9*x^2)*log(x)^2 + 4*x^2 - (2*x^3 - 9*
x^2)*log(x) - 9*x - 11)/(x^2 + 2*x + 1) - 16*(6*x + 5)/(x^2 + 2*x + 1) - 16*(4*x + 3)/(x^2 + 2*x + 1) + 80*(2*
x + 1)/(x^2 + 2*x + 1) + 48*log(x)/(x^2 + 2*x + 1) + 48/(x^2 + 2*x + 1) - 176/(x + 1) + 80*log(x)

Giac [F]

\[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=\int { \frac {32 \, {\left (x^{3} + {\left (x^{4} - x^{3} - 9 \, x^{2} + 9 \, x\right )} \log \left (x\right )^{2} - x^{2} + {\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} + 8 \, x - 3\right )} \log \left (x\right ) - 5 \, x - 3\right )}}{x^{3} + 3 \, x^{2} + 3 \, x + 1} \,d x } \]

[In]

integrate(((32*x^4-32*x^3-288*x^2+288*x)*log(x)^2+(32*x^4-128*x^3+192*x^2+256*x-96)*log(x)+32*x^3-32*x^2-160*x
-96)/(x^3+3*x^2+3*x+1),x, algorithm="giac")

[Out]

integrate(32*(x^3 + (x^4 - x^3 - 9*x^2 + 9*x)*log(x)^2 - x^2 + (x^4 - 4*x^3 + 6*x^2 + 8*x - 3)*log(x) - 5*x -
3)/(x^3 + 3*x^2 + 3*x + 1), x)

Mupad [B] (verification not implemented)

Time = 12.48 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.45 \[ \int \frac {-96-160 x-32 x^2+32 x^3+\left (-96+256 x+192 x^2-128 x^3+32 x^4\right ) \log (x)+\left (288 x-288 x^2-32 x^3+32 x^4\right ) \log ^2(x)}{1+3 x+3 x^2+x^3} \, dx=\frac {16\,x\,\ln \left (x\right )\,\left (x-3\right )\,\left (2\,x+x^2\,\ln \left (x\right )-3\,x\,\ln \left (x\right )+2\right )}{{\left (x+1\right )}^2} \]

[In]

int(-(160*x - log(x)*(256*x + 192*x^2 - 128*x^3 + 32*x^4 - 96) - log(x)^2*(288*x - 288*x^2 - 32*x^3 + 32*x^4)
+ 32*x^2 - 32*x^3 + 96)/(3*x + 3*x^2 + x^3 + 1),x)

[Out]

(16*x*log(x)*(x - 3)*(2*x + x^2*log(x) - 3*x*log(x) + 2))/(x + 1)^2