\(\int \frac {1}{30} e^{\frac {1}{10} (2 e^{x/4}-x-10 \log (\frac {2}{x}))} (-40+2 x-e^{x/4} x) \, dx\) [6482]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 41 \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=\frac {2}{3 \left (1-\frac {x}{-\frac {2 e^{\frac {1}{5} \left (-e^{x/4}+\frac {x}{2}\right )}}{x}+x}\right )} \]

[Out]

2/(3-3*x/(x-exp(ln(2/x)-1/5*exp(1/4*x)+1/10*x)))

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.24, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 2306, 2326} \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=-\frac {e^{\frac {1}{10} \left (2 e^{x/4}-x\right )} x \left (2 x-e^{x/4} x\right )}{3 \left (2-e^{x/4}\right )} \]

[In]

Int[(E^((2*E^(x/4) - x - 10*Log[2/x])/10)*(-40 + 2*x - E^(x/4)*x))/30,x]

[Out]

-1/3*(E^((2*E^(x/4) - x)/10)*x*(2*x - E^(x/4)*x))/(2 - E^(x/4))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2306

Int[(u_.)*(F_)^((a_.)*(Log[z_]*(b_.) + (v_.))), x_Symbol] :> Int[u*F^(a*v)*z^(a*b*Log[F]), x] /; FreeQ[{F, a,
b}, x]

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{30} \int e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx \\ & = \frac {1}{30} \int \frac {1}{2} e^{\frac {1}{10} \left (2 e^{x/4}-x\right )} x \left (-40+2 x-e^{x/4} x\right ) \, dx \\ & = \frac {1}{60} \int e^{\frac {1}{10} \left (2 e^{x/4}-x\right )} x \left (-40+2 x-e^{x/4} x\right ) \, dx \\ & = -\frac {e^{\frac {1}{10} \left (2 e^{x/4}-x\right )} x \left (2 x-e^{x/4} x\right )}{3 \left (2-e^{x/4}\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.63 \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=-\frac {1}{3} e^{\frac {e^{x/4}}{5}-\frac {x}{10}} x^2 \]

[In]

Integrate[(E^((2*E^(x/4) - x - 10*Log[2/x])/10)*(-40 + 2*x - E^(x/4)*x))/30,x]

[Out]

-1/3*(E^(E^(x/4)/5 - x/10)*x^2)

Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.41

method result size
risch \(-\frac {x^{2} {\mathrm e}^{\frac {{\mathrm e}^{\frac {x}{4}}}{5}-\frac {x}{10}}}{3}\) \(17\)
default \(-\frac {x^{2} {\mathrm e}^{\frac {{\mathrm e}^{\frac {x}{4}}}{5}-\frac {x}{10}}}{3}\) \(23\)
norman \(-\frac {x^{2} {\mathrm e}^{\frac {{\mathrm e}^{\frac {x}{4}}}{5}-\frac {x}{10}}}{3}\) \(23\)
parallelrisch \(-\frac {x^{2} {\mathrm e}^{\frac {{\mathrm e}^{\frac {x}{4}}}{5}-\frac {x}{10}}}{3}\) \(23\)
meijerg \(-\frac {4 \left (1-{\mathrm e}^{-x \ln \left (2\right )}\right )}{3 \ln \left (2\right )}-\frac {8 \left (1-\frac {\left (2-\frac {x \left (-4 \ln \left (2\right )+1\right )}{2}\right ) {\mathrm e}^{\frac {x \left (-4 \ln \left (2\right )+1\right )}{4}}}{2}\right )}{15 \left (-4 \ln \left (2\right )+1\right )^{2}}+\frac {1-\frac {\left (2+2 x \ln \left (2\right )\right ) {\mathrm e}^{-x \ln \left (2\right )}}{2}}{15 \ln \left (2\right )^{2}}\) \(76\)

[In]

int(1/30*(-x*exp(1/4*x)+2*x-40)/exp(ln(2/x)-1/5*exp(1/4*x)+1/10*x),x,method=_RETURNVERBOSE)

[Out]

-1/3*x^2*exp(1/5*exp(1/4*x)-1/10*x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.54 \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=-\frac {2}{3} \, x e^{\left (-\frac {1}{10} \, x + \frac {1}{5} \, e^{\left (\frac {1}{4} \, x\right )} - \log \left (\frac {2}{x}\right )\right )} \]

[In]

integrate(1/30*(-x*exp(1/4*x)+2*x-40)/exp(log(2/x)-1/5*exp(1/4*x)+1/10*x),x, algorithm="fricas")

[Out]

-2/3*x*e^(-1/10*x + 1/5*e^(1/4*x) - log(2/x))

Sympy [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.41 \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=- \frac {x^{2} e^{- \frac {x}{10} + \frac {e^{\frac {x}{4}}}{5}}}{3} \]

[In]

integrate(1/30*(-x*exp(1/4*x)+2*x-40)/exp(ln(2/x)-1/5*exp(1/4*x)+1/10*x),x)

[Out]

-x**2*exp(-x/10 + exp(x/4)/5)/3

Maxima [F]

\[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=\int { -\frac {1}{30} \, {\left (x e^{\left (\frac {1}{4} \, x\right )} - 2 \, x + 40\right )} e^{\left (-\frac {1}{10} \, x + \frac {1}{5} \, e^{\left (\frac {1}{4} \, x\right )} - \log \left (\frac {2}{x}\right )\right )} \,d x } \]

[In]

integrate(1/30*(-x*exp(1/4*x)+2*x-40)/exp(log(2/x)-1/5*exp(1/4*x)+1/10*x),x, algorithm="maxima")

[Out]

-1/60*integrate((x*e^(1/4*x) - 2*x + 40)*x*e^(-1/10*x + 1/5*e^(1/4*x)), x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.39 \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=-\frac {1}{3} \, x^{2} e^{\left (-\frac {1}{10} \, x + \frac {1}{5} \, e^{\left (\frac {1}{4} \, x\right )}\right )} \]

[In]

integrate(1/30*(-x*exp(1/4*x)+2*x-40)/exp(log(2/x)-1/5*exp(1/4*x)+1/10*x),x, algorithm="giac")

[Out]

-1/3*x^2*e^(-1/10*x + 1/5*e^(1/4*x))

Mupad [B] (verification not implemented)

Time = 13.16 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.39 \[ \int \frac {1}{30} e^{\frac {1}{10} \left (2 e^{x/4}-x-10 \log \left (\frac {2}{x}\right )\right )} \left (-40+2 x-e^{x/4} x\right ) \, dx=-\frac {x^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{x/4}}{5}-\frac {x}{10}}}{3} \]

[In]

int(-exp(exp(x/4)/5 - x/10 - log(2/x))*((x*exp(x/4))/30 - x/15 + 4/3),x)

[Out]

-(x^2*exp(exp(x/4)/5 - x/10))/3