\(\int \frac {e^{\frac {-3-4 x+\log (\frac {x+x^4-2 x^2 \log (x^2)+\log ^2(x^2)}{x})}{x}} (3 x-4 x^2+6 x^4+(4-8 x^2) \log (x^2)+2 \log ^2(x^2)+(-x-x^4+2 x^2 \log (x^2)-\log ^2(x^2)) \log (\frac {x+x^4-2 x^2 \log (x^2)+\log ^2(x^2)}{x}))}{x^3+x^6-2 x^4 \log (x^2)+x^2 \log ^2(x^2)} \, dx\) [6490]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 151, antiderivative size = 30 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{-5+\frac {-3+x+\log \left (\frac {x+\left (-x^2+\log \left (x^2\right )\right )^2}{x}\right )}{x}} \]

[Out]

exp((ln(((ln(x^2)-x^2)^2+x)/x)+x-3)/x-5)

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.37, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {6838} \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{-\frac {4 x+3}{x}} \left (\frac {x^4+\log ^2\left (x^2\right )-2 x^2 \log \left (x^2\right )+x}{x}\right )^{\frac {1}{x}} \]

[In]

Int[(E^((-3 - 4*x + Log[(x + x^4 - 2*x^2*Log[x^2] + Log[x^2]^2)/x])/x)*(3*x - 4*x^2 + 6*x^4 + (4 - 8*x^2)*Log[
x^2] + 2*Log[x^2]^2 + (-x - x^4 + 2*x^2*Log[x^2] - Log[x^2]^2)*Log[(x + x^4 - 2*x^2*Log[x^2] + Log[x^2]^2)/x])
)/(x^3 + x^6 - 2*x^4*Log[x^2] + x^2*Log[x^2]^2),x]

[Out]

((x + x^4 - 2*x^2*Log[x^2] + Log[x^2]^2)/x)^x^(-1)/E^((3 + 4*x)/x)

Rule 6838

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q*(F^v/Log[F]), x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = e^{-\frac {3+4 x}{x}} \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )^{\frac {1}{x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.20 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{-4-\frac {3}{x}} \left (1+x^3-2 x \log \left (x^2\right )+\frac {\log ^2\left (x^2\right )}{x}\right )^{\frac {1}{x}} \]

[In]

Integrate[(E^((-3 - 4*x + Log[(x + x^4 - 2*x^2*Log[x^2] + Log[x^2]^2)/x])/x)*(3*x - 4*x^2 + 6*x^4 + (4 - 8*x^2
)*Log[x^2] + 2*Log[x^2]^2 + (-x - x^4 + 2*x^2*Log[x^2] - Log[x^2]^2)*Log[(x + x^4 - 2*x^2*Log[x^2] + Log[x^2]^
2)/x]))/(x^3 + x^6 - 2*x^4*Log[x^2] + x^2*Log[x^2]^2),x]

[Out]

E^(-4 - 3/x)*(1 + x^3 - 2*x*Log[x^2] + Log[x^2]^2/x)^x^(-1)

Maple [A] (verified)

Time = 16.21 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.20

method result size
parallelrisch \({\mathrm e}^{\frac {\ln \left (\frac {\ln \left (x^{2}\right )^{2}-2 x^{2} \ln \left (x^{2}\right )+x^{4}+x}{x}\right )-4 x -3}{x}}\) \(36\)

[In]

int(((-ln(x^2)^2+2*x^2*ln(x^2)-x^4-x)*ln((ln(x^2)^2-2*x^2*ln(x^2)+x^4+x)/x)+2*ln(x^2)^2+(-8*x^2+4)*ln(x^2)+6*x
^4-4*x^2+3*x)*exp((ln((ln(x^2)^2-2*x^2*ln(x^2)+x^4+x)/x)-4*x-3)/x)/(x^2*ln(x^2)^2-2*x^4*ln(x^2)+x^6+x^3),x,met
hod=_RETURNVERBOSE)

[Out]

exp((ln((ln(x^2)^2-2*x^2*ln(x^2)+x^4+x)/x)-4*x-3)/x)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.27 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{\left (-\frac {4 \, x - \log \left (\frac {x^{4} - 2 \, x^{2} \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + x}{x}\right ) + 3}{x}\right )} \]

[In]

integrate(((-log(x^2)^2+2*x^2*log(x^2)-x^4-x)*log((log(x^2)^2-2*x^2*log(x^2)+x^4+x)/x)+2*log(x^2)^2+(-8*x^2+4)
*log(x^2)+6*x^4-4*x^2+3*x)*exp((log((log(x^2)^2-2*x^2*log(x^2)+x^4+x)/x)-4*x-3)/x)/(x^2*log(x^2)^2-2*x^4*log(x
^2)+x^6+x^3),x, algorithm="fricas")

[Out]

e^(-(4*x - log((x^4 - 2*x^2*log(x^2) + log(x^2)^2 + x)/x) + 3)/x)

Sympy [A] (verification not implemented)

Time = 1.53 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.07 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{\frac {- 4 x + \log {\left (\frac {x^{4} - 2 x^{2} \log {\left (x^{2} \right )} + x + \log {\left (x^{2} \right )}^{2}}{x} \right )} - 3}{x}} \]

[In]

integrate(((-ln(x**2)**2+2*x**2*ln(x**2)-x**4-x)*ln((ln(x**2)**2-2*x**2*ln(x**2)+x**4+x)/x)+2*ln(x**2)**2+(-8*
x**2+4)*ln(x**2)+6*x**4-4*x**2+3*x)*exp((ln((ln(x**2)**2-2*x**2*ln(x**2)+x**4+x)/x)-4*x-3)/x)/(x**2*ln(x**2)**
2-2*x**4*ln(x**2)+x**6+x**3),x)

[Out]

exp((-4*x + log((x**4 - 2*x**2*log(x**2) + x + log(x**2)**2)/x) - 3)/x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.27 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{\left (\frac {\log \left (x^{4} - 4 \, x^{2} \log \left (x\right ) + 4 \, \log \left (x\right )^{2} + x\right )}{x} - \frac {\log \left (x\right )}{x} - \frac {3}{x} - 4\right )} \]

[In]

integrate(((-log(x^2)^2+2*x^2*log(x^2)-x^4-x)*log((log(x^2)^2-2*x^2*log(x^2)+x^4+x)/x)+2*log(x^2)^2+(-8*x^2+4)
*log(x^2)+6*x^4-4*x^2+3*x)*exp((log((log(x^2)^2-2*x^2*log(x^2)+x^4+x)/x)-4*x-3)/x)/(x^2*log(x^2)^2-2*x^4*log(x
^2)+x^6+x^3),x, algorithm="maxima")

[Out]

e^(log(x^4 - 4*x^2*log(x) + 4*log(x)^2 + x)/x - log(x)/x - 3/x - 4)

Giac [A] (verification not implemented)

none

Time = 0.69 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.17 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx=e^{\left (\frac {\log \left (x^{3} - 2 \, x \log \left (x^{2}\right ) + \frac {\log \left (x^{2}\right )^{2}}{x} + 1\right )}{x} - \frac {3}{x} - 4\right )} \]

[In]

integrate(((-log(x^2)^2+2*x^2*log(x^2)-x^4-x)*log((log(x^2)^2-2*x^2*log(x^2)+x^4+x)/x)+2*log(x^2)^2+(-8*x^2+4)
*log(x^2)+6*x^4-4*x^2+3*x)*exp((log((log(x^2)^2-2*x^2*log(x^2)+x^4+x)/x)-4*x-3)/x)/(x^2*log(x^2)^2-2*x^4*log(x
^2)+x^6+x^3),x, algorithm="giac")

[Out]

e^(log(x^3 - 2*x*log(x^2) + log(x^2)^2/x + 1)/x - 3/x - 4)

Mupad [B] (verification not implemented)

Time = 14.50 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.17 \[ \int \frac {e^{\frac {-3-4 x+\log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )}{x}} \left (3 x-4 x^2+6 x^4+\left (4-8 x^2\right ) \log \left (x^2\right )+2 \log ^2\left (x^2\right )+\left (-x-x^4+2 x^2 \log \left (x^2\right )-\log ^2\left (x^2\right )\right ) \log \left (\frac {x+x^4-2 x^2 \log \left (x^2\right )+\log ^2\left (x^2\right )}{x}\right )\right )}{x^3+x^6-2 x^4 \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx={\mathrm {e}}^{-4}\,{\mathrm {e}}^{-\frac {3}{x}}\,{\left (x^3-2\,x\,\ln \left (x^2\right )+\frac {{\ln \left (x^2\right )}^2}{x}+1\right )}^{1/x} \]

[In]

int((exp(-(4*x - log((x - 2*x^2*log(x^2) + log(x^2)^2 + x^4)/x) + 3)/x)*(3*x - log(x^2)*(8*x^2 - 4) - log((x -
 2*x^2*log(x^2) + log(x^2)^2 + x^4)/x)*(x - 2*x^2*log(x^2) + log(x^2)^2 + x^4) + 2*log(x^2)^2 - 4*x^2 + 6*x^4)
)/(x^3 - 2*x^4*log(x^2) + x^6 + x^2*log(x^2)^2),x)

[Out]

exp(-4)*exp(-3/x)*(x^3 - 2*x*log(x^2) + log(x^2)^2/x + 1)^(1/x)