\(\int e^{-4 e^x} (-2 x-2 e^{4 e^x} x+4 e^x x^2) \, dx\) [6547]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 30 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=i \pi -x \left (x+e^{-4 e^x} x\right )+\log \left (-2+e^{e^{4 e}}\right ) \]

[Out]

ln(2-exp(exp(exp(1+2*ln(2)))))-(x/exp(4*exp(x))+x)*x

Rubi [F]

\[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=\int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx \]

[In]

Int[(-2*x - 2*E^(4*E^x)*x + 4*E^x*x^2)/E^(4*E^x),x]

[Out]

-x^2 - 2*Defer[Int][x/E^(4*E^x), x] + 4*Defer[Int][E^(-4*E^x + x)*x^2, x]

Rubi steps \begin{align*} \text {integral}& = \int 2 e^{-4 e^x} x \left (-1-e^{4 e^x}+2 e^x x\right ) \, dx \\ & = 2 \int e^{-4 e^x} x \left (-1-e^{4 e^x}+2 e^x x\right ) \, dx \\ & = 2 \int \left (-e^{-4 e^x} \left (1+e^{4 e^x}\right ) x+2 e^{-4 e^x+x} x^2\right ) \, dx \\ & = -\left (2 \int e^{-4 e^x} \left (1+e^{4 e^x}\right ) x \, dx\right )+4 \int e^{-4 e^x+x} x^2 \, dx \\ & = -\left (2 \int \left (1+e^{-4 e^x}\right ) x \, dx\right )+4 \int e^{-4 e^x+x} x^2 \, dx \\ & = -\left (2 \int \left (x+e^{-4 e^x} x\right ) \, dx\right )+4 \int e^{-4 e^x+x} x^2 \, dx \\ & = -x^2-2 \int e^{-4 e^x} x \, dx+4 \int e^{-4 e^x+x} x^2 \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.47 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=-\left (\left (1+e^{-4 e^x}\right ) x^2\right ) \]

[In]

Integrate[(-2*x - 2*E^(4*E^x)*x + 4*E^x*x^2)/E^(4*E^x),x]

[Out]

-((1 + E^(-4*E^x))*x^2)

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.57

method result size
risch \(-x^{2}-x^{2} {\mathrm e}^{-4 \,{\mathrm e}^{x}}\) \(17\)
norman \(\left (-x^{2}-x^{2} {\mathrm e}^{4 \,{\mathrm e}^{x}}\right ) {\mathrm e}^{-4 \,{\mathrm e}^{x}}\) \(25\)
parallelrisch \(\left (-x^{2}-x^{2} {\mathrm e}^{4 \,{\mathrm e}^{x}}\right ) {\mathrm e}^{-4 \,{\mathrm e}^{x}}\) \(25\)

[In]

int((-2*x*exp(4*exp(x))+4*exp(x)*x^2-2*x)/exp(4*exp(x)),x,method=_RETURNVERBOSE)

[Out]

-x^2-x^2*exp(-4*exp(x))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.67 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=-{\left (x^{2} e^{\left (4 \, e^{x}\right )} + x^{2}\right )} e^{\left (-4 \, e^{x}\right )} \]

[In]

integrate((-2*x*exp(4*exp(x))+4*exp(x)*x^2-2*x)/exp(4*exp(x)),x, algorithm="fricas")

[Out]

-(x^2*e^(4*e^x) + x^2)*e^(-4*e^x)

Sympy [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.47 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=- x^{2} - x^{2} e^{- 4 e^{x}} \]

[In]

integrate((-2*x*exp(4*exp(x))+4*exp(x)*x**2-2*x)/exp(4*exp(x)),x)

[Out]

-x**2 - x**2*exp(-4*exp(x))

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.53 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=-x^{2} e^{\left (-4 \, e^{x}\right )} - x^{2} \]

[In]

integrate((-2*x*exp(4*exp(x))+4*exp(x)*x^2-2*x)/exp(4*exp(x)),x, algorithm="maxima")

[Out]

-x^2*e^(-4*e^x) - x^2

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.80 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=-{\left (x^{2} e^{\left (x - 4 \, e^{x}\right )} + x^{2} e^{x}\right )} e^{\left (-x\right )} \]

[In]

integrate((-2*x*exp(4*exp(x))+4*exp(x)*x^2-2*x)/exp(4*exp(x)),x, algorithm="giac")

[Out]

-(x^2*e^(x - 4*e^x) + x^2*e^x)*e^(-x)

Mupad [B] (verification not implemented)

Time = 11.73 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.40 \[ \int e^{-4 e^x} \left (-2 x-2 e^{4 e^x} x+4 e^x x^2\right ) \, dx=-x^2\,\left ({\mathrm {e}}^{-4\,{\mathrm {e}}^x}+1\right ) \]

[In]

int(-exp(-4*exp(x))*(2*x - 4*x^2*exp(x) + 2*x*exp(4*exp(x))),x)

[Out]

-x^2*(exp(-4*exp(x)) + 1)