\(\int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx\) [6593]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [C] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 16 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=3+x^2+\frac {16 (-2+x)}{9 \log (x)} \]

[Out]

3+x^2+16/9*(-2+x)/ln(x)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.31, number of steps used = 12, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {12, 6873, 6874, 2395, 2334, 2335, 2339, 30} \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=x^2+\frac {16 x}{9 \log (x)}-\frac {32}{9 \log (x)} \]

[In]

Int[(32 - 16*x + 16*x*Log[x] + 18*x^2*Log[x]^2)/(9*x*Log[x]^2),x]

[Out]

x^2 - 32/(9*Log[x]) + (16*x)/(9*Log[x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[x*((a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2335

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2339

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2395

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{9} \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{x \log ^2(x)} \, dx \\ & = \frac {1}{9} \int \frac {2 \left (16-8 x+8 x \log (x)+9 x^2 \log ^2(x)\right )}{x \log ^2(x)} \, dx \\ & = \frac {2}{9} \int \frac {16-8 x+8 x \log (x)+9 x^2 \log ^2(x)}{x \log ^2(x)} \, dx \\ & = \frac {2}{9} \int \left (9 x-\frac {8 (-2+x)}{x \log ^2(x)}+\frac {8}{\log (x)}\right ) \, dx \\ & = x^2-\frac {16}{9} \int \frac {-2+x}{x \log ^2(x)} \, dx+\frac {16}{9} \int \frac {1}{\log (x)} \, dx \\ & = x^2+\frac {16 \text {li}(x)}{9}-\frac {16}{9} \int \left (\frac {1}{\log ^2(x)}-\frac {2}{x \log ^2(x)}\right ) \, dx \\ & = x^2+\frac {16 \text {li}(x)}{9}-\frac {16}{9} \int \frac {1}{\log ^2(x)} \, dx+\frac {32}{9} \int \frac {1}{x \log ^2(x)} \, dx \\ & = x^2+\frac {16 x}{9 \log (x)}+\frac {16 \text {li}(x)}{9}-\frac {16}{9} \int \frac {1}{\log (x)} \, dx+\frac {32}{9} \text {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right ) \\ & = x^2-\frac {32}{9 \log (x)}+\frac {16 x}{9 \log (x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.31 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=x^2-\frac {32}{9 \log (x)}+\frac {16 x}{9 \log (x)} \]

[In]

Integrate[(32 - 16*x + 16*x*Log[x] + 18*x^2*Log[x]^2)/(9*x*Log[x]^2),x]

[Out]

x^2 - 32/(9*Log[x]) + (16*x)/(9*Log[x])

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.88

method result size
risch \(x^{2}+\frac {-\frac {32}{9}+\frac {16 x}{9}}{\ln \left (x \right )}\) \(14\)
norman \(\frac {-\frac {32}{9}+x^{2} \ln \left (x \right )+\frac {16 x}{9}}{\ln \left (x \right )}\) \(17\)
default \(x^{2}+\frac {16 x}{9 \ln \left (x \right )}-\frac {32}{9 \ln \left (x \right )}\) \(18\)
parts \(x^{2}+\frac {16 x}{9 \ln \left (x \right )}-\frac {32}{9 \ln \left (x \right )}\) \(18\)
parallelrisch \(\frac {9 x^{2} \ln \left (x \right )-32+16 x}{9 \ln \left (x \right )}\) \(19\)

[In]

int(1/9*(18*x^2*ln(x)^2+16*x*ln(x)-16*x+32)/x/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

x^2+16/9*(-2+x)/ln(x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=\frac {9 \, x^{2} \log \left (x\right ) + 16 \, x - 32}{9 \, \log \left (x\right )} \]

[In]

integrate(1/9*(18*x^2*log(x)^2+16*x*log(x)-16*x+32)/x/log(x)^2,x, algorithm="fricas")

[Out]

1/9*(9*x^2*log(x) + 16*x - 32)/log(x)

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.75 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=x^{2} + \frac {16 x - 32}{9 \log {\left (x \right )}} \]

[In]

integrate(1/9*(18*x**2*ln(x)**2+16*x*ln(x)-16*x+32)/x/ln(x)**2,x)

[Out]

x**2 + (16*x - 32)/(9*log(x))

Maxima [C] (verification not implemented)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.22 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.44 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=x^{2} - \frac {32}{9 \, \log \left (x\right )} + \frac {16}{9} \, {\rm Ei}\left (\log \left (x\right )\right ) - \frac {16}{9} \, \Gamma \left (-1, -\log \left (x\right )\right ) \]

[In]

integrate(1/9*(18*x^2*log(x)^2+16*x*log(x)-16*x+32)/x/log(x)^2,x, algorithm="maxima")

[Out]

x^2 - 32/9/log(x) + 16/9*Ei(log(x)) - 16/9*gamma(-1, -log(x))

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.81 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=x^{2} + \frac {16 \, {\left (x - 2\right )}}{9 \, \log \left (x\right )} \]

[In]

integrate(1/9*(18*x^2*log(x)^2+16*x*log(x)-16*x+32)/x/log(x)^2,x, algorithm="giac")

[Out]

x^2 + 16/9*(x - 2)/log(x)

Mupad [B] (verification not implemented)

Time = 11.93 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.88 \[ \int \frac {32-16 x+16 x \log (x)+18 x^2 \log ^2(x)}{9 x \log ^2(x)} \, dx=x^2+\frac {\frac {16\,x}{9}-\frac {32}{9}}{\ln \left (x\right )} \]

[In]

int((2*x^2*log(x)^2 - (16*x)/9 + (16*x*log(x))/9 + 32/9)/(x*log(x)^2),x)

[Out]

x^2 + ((16*x)/9 - 32/9)/log(x)