\(\int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx\) [6822]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 44, antiderivative size = 29 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=\frac {6 e^{\frac {4 (16-x)}{x}}}{-1+e^3}+5 \left (-5+x^2\right ) \]

[Out]

6*exp((16-x)/x)^4/(exp(3)-1)+5*x^2-25

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6, 12, 14, 2240} \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=5 x^2-\frac {6 e^{\frac {64}{x}-4}}{1-e^3} \]

[In]

Int[(-384*E^((4*(16 - x))/x) - 10*x^3 + 10*E^3*x^3)/(-x^2 + E^3*x^2),x]

[Out]

(-6*E^(-4 + 64/x))/(1 - E^3) + 5*x^2

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2240

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^n*(
F^(a + b*(c + d*x)^n)/(b*f*n*(c + d*x)^n*Log[F])), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{\left (-1+e^3\right ) x^2} \, dx \\ & = \int \frac {-384 e^{\frac {4 (16-x)}{x}}+\left (-10+10 e^3\right ) x^3}{\left (-1+e^3\right ) x^2} \, dx \\ & = \frac {\int \frac {-384 e^{\frac {4 (16-x)}{x}}+\left (-10+10 e^3\right ) x^3}{x^2} \, dx}{-1+e^3} \\ & = \frac {\int \left (-\frac {384 e^{-4+\frac {64}{x}}}{x^2}+10 \left (-1+e^3\right ) x\right ) \, dx}{-1+e^3} \\ & = 5 x^2+\frac {384 \int \frac {e^{-4+\frac {64}{x}}}{x^2} \, dx}{1-e^3} \\ & = -\frac {6 e^{-4+\frac {64}{x}}}{1-e^3}+5 x^2 \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.34 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=\frac {2 \left (3 e^{64/x}-\frac {5}{2} e^4 \left (1-e^3\right ) x^2\right )}{e^4 \left (-1+e^3\right )} \]

[In]

Integrate[(-384*E^((4*(16 - x))/x) - 10*x^3 + 10*E^3*x^3)/(-x^2 + E^3*x^2),x]

[Out]

(2*(3*E^(64/x) - (5*E^4*(1 - E^3)*x^2)/2))/(E^4*(-1 + E^3))

Maple [A] (verified)

Time = 0.61 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.83

method result size
risch \(5 x^{2}+\frac {6 \,{\mathrm e}^{-\frac {4 \left (x -16\right )}{x}}}{{\mathrm e}^{3}-1}\) \(24\)
parts \(5 x^{2}+\frac {6 \,{\mathrm e}^{\frac {-4 x +64}{x}}}{{\mathrm e}^{3}-1}\) \(27\)
norman \(\frac {5 x^{3}+\frac {6 x \,{\mathrm e}^{\frac {-4 x +64}{x}}}{{\mathrm e}^{3}-1}}{x}\) \(32\)
derivativedivides \(-\frac {1280 x^{2}}{256 \,{\mathrm e}^{3}-256}+\frac {6 \,{\mathrm e}^{-4+\frac {64}{x}}}{{\mathrm e}^{3}-1}+\frac {1280 \,{\mathrm e}^{3} x^{2}}{256 \,{\mathrm e}^{3}-256}\) \(48\)
default \(-\frac {1280 x^{2}}{256 \,{\mathrm e}^{3}-256}+\frac {6 \,{\mathrm e}^{-4+\frac {64}{x}}}{{\mathrm e}^{3}-1}+\frac {1280 \,{\mathrm e}^{3} x^{2}}{256 \,{\mathrm e}^{3}-256}\) \(48\)

[In]

int((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x,method=_RETURNVERBOSE)

[Out]

5*x^2+6*exp(-4*(x-16)/x)/(exp(3)-1)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.07 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=\frac {5 \, x^{2} e^{3} - 5 \, x^{2} + 6 \, e^{\left (-\frac {4 \, {\left (x - 16\right )}}{x}\right )}}{e^{3} - 1} \]

[In]

integrate((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x, algorithm="fricas")

[Out]

(5*x^2*e^3 - 5*x^2 + 6*e^(-4*(x - 16)/x))/(e^3 - 1)

Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.66 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=5 x^{2} + \frac {6 e^{\frac {4 \cdot \left (16 - x\right )}{x}}}{-1 + e^{3}} \]

[In]

integrate((-384*exp((16-x)/x)**4+10*x**3*exp(3)-10*x**3)/(x**2*exp(3)-x**2),x)

[Out]

5*x**2 + 6*exp(4*(16 - x)/x)/(-1 + exp(3))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.45 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=\frac {5 \, x^{2} e^{3}}{e^{3} - 1} - \frac {5 \, x^{2}}{e^{3} - 1} + \frac {6 \, e^{\frac {64}{x}}}{e^{7} - e^{4}} \]

[In]

integrate((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x, algorithm="maxima")

[Out]

5*x^2*e^3/(e^3 - 1) - 5*x^2/(e^3 - 1) + 6*e^(64/x)/(e^7 - e^4)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 100 vs. \(2 (24) = 48\).

Time = 0.28 (sec) , antiderivative size = 100, normalized size of antiderivative = 3.45 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=\frac {2 \, {\left (\frac {3 \, {\left (x - 16\right )}^{2} e^{\left (-\frac {4 \, {\left (x - 16\right )}}{x}\right )}}{x^{2}} - \frac {6 \, {\left (x - 16\right )} e^{\left (-\frac {4 \, {\left (x - 16\right )}}{x}\right )}}{x} + 640 \, e^{3} + 3 \, e^{\left (-\frac {4 \, {\left (x - 16\right )}}{x}\right )} - 640\right )}}{\frac {{\left (x - 16\right )}^{2} e^{3}}{x^{2}} - \frac {2 \, {\left (x - 16\right )} e^{3}}{x} - \frac {{\left (x - 16\right )}^{2}}{x^{2}} + \frac {2 \, {\left (x - 16\right )}}{x} + e^{3} - 1} \]

[In]

integrate((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x, algorithm="giac")

[Out]

2*(3*(x - 16)^2*e^(-4*(x - 16)/x)/x^2 - 6*(x - 16)*e^(-4*(x - 16)/x)/x + 640*e^3 + 3*e^(-4*(x - 16)/x) - 640)/
((x - 16)^2*e^3/x^2 - 2*(x - 16)*e^3/x - (x - 16)^2/x^2 + 2*(x - 16)/x + e^3 - 1)

Mupad [B] (verification not implemented)

Time = 11.72 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.14 \[ \int \frac {-384 e^{\frac {4 (16-x)}{x}}-10 x^3+10 e^3 x^3}{-x^2+e^3 x^2} \, dx=\frac {6\,{\mathrm {e}}^{\frac {64}{x}-4}}{{\mathrm {e}}^3-1}+\frac {x^2\,\left (5\,{\mathrm {e}}^3-5\right )}{{\mathrm {e}}^3-1} \]

[In]

int(-(384*exp(-(4*(x - 16))/x) - 10*x^3*exp(3) + 10*x^3)/(x^2*exp(3) - x^2),x)

[Out]

(6*exp(64/x - 4))/(exp(3) - 1) + (x^2*(5*exp(3) - 5))/(exp(3) - 1)