\(\int \frac {e^{x+x^2} (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6))+e^{x+x^2} (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6) \log (x)+(e^{x+x^2} (x^4+2 x^5+e^4 (-x^4-2 x^5))+e^{x+x^2} (-x^4-2 x^5) \log (x)) \log (-1+e^4+\log (x))}{-9+6 x^3-x^6+e^4 (9-6 x^3+x^6)+(9-6 x^3+x^6) \log (x)+(-6 x^2+2 x^5+e^4 (6 x^2-2 x^5)+(6 x^2-2 x^5) \log (x)) \log (-1+e^4+\log (x))+(-x^4+e^4 x^4+x^4 \log (x)) \log ^2(-1+e^4+\log (x))} \, dx\) [7315]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 288, antiderivative size = 31 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=\frac {e^{x+x^2} x}{-\frac {3}{x}+x \left (x-\log \left (-1+e^4+\log (x)\right )\right )} \]

[Out]

exp(x^2+x)/((x-ln(ln(x)+exp(4)-1))*x-3/x)*x

Rubi [F]

\[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=\int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx \]

[In]

Int[(E^(x + x^2)*(6*x + 3*x^2 + 7*x^3 + x^4 - x^5 - 2*x^6 + E^4*(-6*x - 3*x^2 - 6*x^3 - x^4 + x^5 + 2*x^6)) +
E^(x + x^2)*(-6*x - 3*x^2 - 6*x^3 - x^4 + x^5 + 2*x^6)*Log[x] + (E^(x + x^2)*(x^4 + 2*x^5 + E^4*(-x^4 - 2*x^5)
) + E^(x + x^2)*(-x^4 - 2*x^5)*Log[x])*Log[-1 + E^4 + Log[x]])/(-9 + 6*x^3 - x^6 + E^4*(9 - 6*x^3 + x^6) + (9
- 6*x^3 + x^6)*Log[x] + (-6*x^2 + 2*x^5 + E^4*(6*x^2 - 2*x^5) + (6*x^2 - 2*x^5)*Log[x])*Log[-1 + E^4 + Log[x]]
 + (-x^4 + E^4*x^4 + x^4*Log[x])*Log[-1 + E^4 + Log[x]]^2),x]

[Out]

6*(1 - E^4)*Defer[Int][(E^(x + x^2)*x)/((-1 + E^4 + Log[x])*(-3 + x^3 - x^2*Log[-1 + E^4 + Log[x]])^2), x] + D
efer[Int][(E^(x + x^2)*x^3)/((-1 + E^4 + Log[x])*(-3 + x^3 - x^2*Log[-1 + E^4 + Log[x]])^2), x] + (1 - E^4)*De
fer[Int][(E^(x + x^2)*x^4)/((-1 + E^4 + Log[x])*(-3 + x^3 - x^2*Log[-1 + E^4 + Log[x]])^2), x] - 6*Defer[Int][
(E^(x + x^2)*x*Log[x])/((-1 + E^4 + Log[x])*(-3 + x^3 - x^2*Log[-1 + E^4 + Log[x]])^2), x] - Defer[Int][(E^(x
+ x^2)*x^4*Log[x])/((-1 + E^4 + Log[x])*(-3 + x^3 - x^2*Log[-1 + E^4 + Log[x]])^2), x] + Defer[Int][(E^(x + x^
2)*x^2)/(-3 + x^3 - x^2*Log[-1 + E^4 + Log[x]]), x] + 2*Defer[Int][(E^(x + x^2)*x^3)/(-3 + x^3 - x^2*Log[-1 +
E^4 + Log[x]]), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {e^{x+x^2} x \left (-6 \left (1-e^4\right )-3 \left (1-e^4\right ) x-7 \left (1-\frac {6 e^4}{7}\right ) x^2-\left (1-e^4\right ) x^3+\left (1-e^4\right ) x^4+2 \left (1-e^4\right ) x^5+\left (-1+e^4\right ) x^3 (1+2 x) \log \left (-1+e^4+\log (x)\right )-\log (x) \left (-6-3 x-6 x^2-x^3+x^4+2 x^5-x^3 (1+2 x) \log \left (-1+e^4+\log (x)\right )\right )\right )}{\left (1-e^4-\log (x)\right ) \left (3-x^3+x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx \\ & = \int \left (\frac {e^{x+x^2} x^2 (1+2 x)}{-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )}+\frac {e^{x+x^2} x \left (-6 \left (1-e^4\right )-x^2-\left (1-e^4\right ) x^3+6 \log (x)+x^3 \log (x)\right )}{\left (1-e^4-\log (x)\right ) \left (3-x^3+x^2 \log \left (-1+e^4+\log (x)\right )\right )^2}\right ) \, dx \\ & = \int \frac {e^{x+x^2} x^2 (1+2 x)}{-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )} \, dx+\int \frac {e^{x+x^2} x \left (-6 \left (1-e^4\right )-x^2-\left (1-e^4\right ) x^3+6 \log (x)+x^3 \log (x)\right )}{\left (1-e^4-\log (x)\right ) \left (3-x^3+x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx \\ & = \int \left (-\frac {6 e^{x+x^2} \left (-1+e^4\right ) x}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2}+\frac {e^{x+x^2} x^3}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2}-\frac {e^{x+x^2} \left (-1+e^4\right ) x^4}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2}-\frac {6 e^{x+x^2} x \log (x)}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2}-\frac {e^{x+x^2} x^4 \log (x)}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2}\right ) \, dx+\int \left (\frac {e^{x+x^2} x^2}{-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )}+\frac {2 e^{x+x^2} x^3}{-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )}\right ) \, dx \\ & = 2 \int \frac {e^{x+x^2} x^3}{-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )} \, dx-6 \int \frac {e^{x+x^2} x \log (x)}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx+\left (1-e^4\right ) \int \frac {e^{x+x^2} x^4}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx+\left (6 \left (1-e^4\right )\right ) \int \frac {e^{x+x^2} x}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx+\int \frac {e^{x+x^2} x^3}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx-\int \frac {e^{x+x^2} x^4 \log (x)}{\left (-1+e^4+\log (x)\right ) \left (-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )\right )^2} \, dx+\int \frac {e^{x+x^2} x^2}{-3+x^3-x^2 \log \left (-1+e^4+\log (x)\right )} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.06 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=-\frac {e^{x+x^2} x^2}{3-x^3+x^2 \log \left (-1+e^4+\log (x)\right )} \]

[In]

Integrate[(E^(x + x^2)*(6*x + 3*x^2 + 7*x^3 + x^4 - x^5 - 2*x^6 + E^4*(-6*x - 3*x^2 - 6*x^3 - x^4 + x^5 + 2*x^
6)) + E^(x + x^2)*(-6*x - 3*x^2 - 6*x^3 - x^4 + x^5 + 2*x^6)*Log[x] + (E^(x + x^2)*(x^4 + 2*x^5 + E^4*(-x^4 -
2*x^5)) + E^(x + x^2)*(-x^4 - 2*x^5)*Log[x])*Log[-1 + E^4 + Log[x]])/(-9 + 6*x^3 - x^6 + E^4*(9 - 6*x^3 + x^6)
 + (9 - 6*x^3 + x^6)*Log[x] + (-6*x^2 + 2*x^5 + E^4*(6*x^2 - 2*x^5) + (6*x^2 - 2*x^5)*Log[x])*Log[-1 + E^4 + L
og[x]] + (-x^4 + E^4*x^4 + x^4*Log[x])*Log[-1 + E^4 + Log[x]]^2),x]

[Out]

-((E^(x + x^2)*x^2)/(3 - x^3 + x^2*Log[-1 + E^4 + Log[x]]))

Maple [A] (verified)

Time = 109.76 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.97

method result size
risch \(\frac {x^{2} {\mathrm e}^{\left (1+x \right ) x}}{x^{3}-x^{2} \ln \left (\ln \left (x \right )+{\mathrm e}^{4}-1\right )-3}\) \(30\)
parallelrisch \(\frac {x^{2} {\mathrm e}^{x^{2}+x}}{x^{3}-x^{2} \ln \left (\ln \left (x \right )+{\mathrm e}^{4}-1\right )-3}\) \(30\)

[In]

int((((-2*x^5-x^4)*exp(x^2+x)*ln(x)+((-2*x^5-x^4)*exp(4)+2*x^5+x^4)*exp(x^2+x))*ln(ln(x)+exp(4)-1)+(2*x^6+x^5-
x^4-6*x^3-3*x^2-6*x)*exp(x^2+x)*ln(x)+((2*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(4)-2*x^6-x^5+x^4+7*x^3+3*x^2+6*x)*e
xp(x^2+x))/((x^4*ln(x)+x^4*exp(4)-x^4)*ln(ln(x)+exp(4)-1)^2+((-2*x^5+6*x^2)*ln(x)+(-2*x^5+6*x^2)*exp(4)+2*x^5-
6*x^2)*ln(ln(x)+exp(4)-1)+(x^6-6*x^3+9)*ln(x)+(x^6-6*x^3+9)*exp(4)-x^6+6*x^3-9),x,method=_RETURNVERBOSE)

[Out]

x^2*exp((1+x)*x)/(x^3-x^2*ln(ln(x)+exp(4)-1)-3)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.94 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=\frac {x^{2} e^{\left (x^{2} + x\right )}}{x^{3} - x^{2} \log \left (e^{4} + \log \left (x\right ) - 1\right ) - 3} \]

[In]

integrate((((-2*x^5-x^4)*exp(x^2+x)*log(x)+((-2*x^5-x^4)*exp(4)+2*x^5+x^4)*exp(x^2+x))*log(log(x)+exp(4)-1)+(2
*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(x^2+x)*log(x)+((2*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(4)-2*x^6-x^5+x^4+7*x^3+3*
x^2+6*x)*exp(x^2+x))/((x^4*log(x)+x^4*exp(4)-x^4)*log(log(x)+exp(4)-1)^2+((-2*x^5+6*x^2)*log(x)+(-2*x^5+6*x^2)
*exp(4)+2*x^5-6*x^2)*log(log(x)+exp(4)-1)+(x^6-6*x^3+9)*log(x)+(x^6-6*x^3+9)*exp(4)-x^6+6*x^3-9),x, algorithm=
"fricas")

[Out]

x^2*e^(x^2 + x)/(x^3 - x^2*log(e^4 + log(x) - 1) - 3)

Sympy [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.87 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=\frac {x^{2} e^{x^{2} + x}}{x^{3} - x^{2} \log {\left (\log {\left (x \right )} - 1 + e^{4} \right )} - 3} \]

[In]

integrate((((-2*x**5-x**4)*exp(x**2+x)*ln(x)+((-2*x**5-x**4)*exp(4)+2*x**5+x**4)*exp(x**2+x))*ln(ln(x)+exp(4)-
1)+(2*x**6+x**5-x**4-6*x**3-3*x**2-6*x)*exp(x**2+x)*ln(x)+((2*x**6+x**5-x**4-6*x**3-3*x**2-6*x)*exp(4)-2*x**6-
x**5+x**4+7*x**3+3*x**2+6*x)*exp(x**2+x))/((x**4*ln(x)+x**4*exp(4)-x**4)*ln(ln(x)+exp(4)-1)**2+((-2*x**5+6*x**
2)*ln(x)+(-2*x**5+6*x**2)*exp(4)+2*x**5-6*x**2)*ln(ln(x)+exp(4)-1)+(x**6-6*x**3+9)*ln(x)+(x**6-6*x**3+9)*exp(4
)-x**6+6*x**3-9),x)

[Out]

x**2*exp(x**2 + x)/(x**3 - x**2*log(log(x) - 1 + exp(4)) - 3)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.94 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=\frac {x^{2} e^{\left (x^{2} + x\right )}}{x^{3} - x^{2} \log \left (e^{4} + \log \left (x\right ) - 1\right ) - 3} \]

[In]

integrate((((-2*x^5-x^4)*exp(x^2+x)*log(x)+((-2*x^5-x^4)*exp(4)+2*x^5+x^4)*exp(x^2+x))*log(log(x)+exp(4)-1)+(2
*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(x^2+x)*log(x)+((2*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(4)-2*x^6-x^5+x^4+7*x^3+3*
x^2+6*x)*exp(x^2+x))/((x^4*log(x)+x^4*exp(4)-x^4)*log(log(x)+exp(4)-1)^2+((-2*x^5+6*x^2)*log(x)+(-2*x^5+6*x^2)
*exp(4)+2*x^5-6*x^2)*log(log(x)+exp(4)-1)+(x^6-6*x^3+9)*log(x)+(x^6-6*x^3+9)*exp(4)-x^6+6*x^3-9),x, algorithm=
"maxima")

[Out]

x^2*e^(x^2 + x)/(x^3 - x^2*log(e^4 + log(x) - 1) - 3)

Giac [A] (verification not implemented)

none

Time = 0.46 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.94 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=\frac {x^{2} e^{\left (x^{2} + x\right )}}{x^{3} - x^{2} \log \left (e^{4} + \log \left (x\right ) - 1\right ) - 3} \]

[In]

integrate((((-2*x^5-x^4)*exp(x^2+x)*log(x)+((-2*x^5-x^4)*exp(4)+2*x^5+x^4)*exp(x^2+x))*log(log(x)+exp(4)-1)+(2
*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(x^2+x)*log(x)+((2*x^6+x^5-x^4-6*x^3-3*x^2-6*x)*exp(4)-2*x^6-x^5+x^4+7*x^3+3*
x^2+6*x)*exp(x^2+x))/((x^4*log(x)+x^4*exp(4)-x^4)*log(log(x)+exp(4)-1)^2+((-2*x^5+6*x^2)*log(x)+(-2*x^5+6*x^2)
*exp(4)+2*x^5-6*x^2)*log(log(x)+exp(4)-1)+(x^6-6*x^3+9)*log(x)+(x^6-6*x^3+9)*exp(4)-x^6+6*x^3-9),x, algorithm=
"giac")

[Out]

x^2*e^(x^2 + x)/(x^3 - x^2*log(e^4 + log(x) - 1) - 3)

Mupad [B] (verification not implemented)

Time = 13.42 (sec) , antiderivative size = 268, normalized size of antiderivative = 8.65 \[ \int \frac {e^{x+x^2} \left (6 x+3 x^2+7 x^3+x^4-x^5-2 x^6+e^4 \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right )\right )+e^{x+x^2} \left (-6 x-3 x^2-6 x^3-x^4+x^5+2 x^6\right ) \log (x)+\left (e^{x+x^2} \left (x^4+2 x^5+e^4 \left (-x^4-2 x^5\right )\right )+e^{x+x^2} \left (-x^4-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )}{-9+6 x^3-x^6+e^4 \left (9-6 x^3+x^6\right )+\left (9-6 x^3+x^6\right ) \log (x)+\left (-6 x^2+2 x^5+e^4 \left (6 x^2-2 x^5\right )+\left (6 x^2-2 x^5\right ) \log (x)\right ) \log \left (-1+e^4+\log (x)\right )+\left (-x^4+e^4 x^4+x^4 \log (x)\right ) \log ^2\left (-1+e^4+\log (x)\right )} \, dx=-\frac {x^3\,\left (6\,{\mathrm {e}}^{x^2+x}-12\,{\mathrm {e}}^{x^2+x+4}+6\,{\mathrm {e}}^{x^2+x+8}-12\,{\mathrm {e}}^{x^2+x}\,\ln \left (x\right )+12\,{\mathrm {e}}^{x^2+x+4}\,\ln \left (x\right )+6\,{\mathrm {e}}^{x^2+x}\,{\ln \left (x\right )}^2\right )-x^5\,\left ({\mathrm {e}}^{x^2+x+4}-{\mathrm {e}}^{x^2+x}+{\mathrm {e}}^{x^2+x}\,\ln \left (x\right )\right )+x^6\,\left ({\mathrm {e}}^{x^2+x}-2\,{\mathrm {e}}^{x^2+x+4}+{\mathrm {e}}^{x^2+x+8}-2\,{\mathrm {e}}^{x^2+x}\,\ln \left (x\right )+2\,{\mathrm {e}}^{x^2+x+4}\,\ln \left (x\right )+{\mathrm {e}}^{x^2+x}\,{\ln \left (x\right )}^2\right )}{\left (x^2\,\ln \left ({\mathrm {e}}^4+\ln \left (x\right )-1\right )-x^3+3\right )\,\left (6\,x+6\,x\,{\ln \left (x\right )}^2-x^3\,\ln \left (x\right )-2\,x^4\,\ln \left (x\right )-12\,x\,{\mathrm {e}}^4+6\,x\,{\mathrm {e}}^8+x^4\,{\ln \left (x\right )}^2-x^3\,{\mathrm {e}}^4-2\,x^4\,{\mathrm {e}}^4+x^4\,{\mathrm {e}}^8-12\,x\,\ln \left (x\right )+x^3+x^4+12\,x\,{\mathrm {e}}^4\,\ln \left (x\right )+2\,x^4\,{\mathrm {e}}^4\,\ln \left (x\right )\right )} \]

[In]

int((exp(x + x^2)*(6*x - exp(4)*(6*x + 3*x^2 + 6*x^3 + x^4 - x^5 - 2*x^6) + 3*x^2 + 7*x^3 + x^4 - x^5 - 2*x^6)
 + log(exp(4) + log(x) - 1)*(exp(x + x^2)*(x^4 - exp(4)*(x^4 + 2*x^5) + 2*x^5) - exp(x + x^2)*log(x)*(x^4 + 2*
x^5)) - exp(x + x^2)*log(x)*(6*x + 3*x^2 + 6*x^3 + x^4 - x^5 - 2*x^6))/(log(exp(4) + log(x) - 1)^2*(x^4*log(x)
 + x^4*exp(4) - x^4) + exp(4)*(x^6 - 6*x^3 + 9) + log(x)*(x^6 - 6*x^3 + 9) + 6*x^3 - x^6 + log(exp(4) + log(x)
 - 1)*(log(x)*(6*x^2 - 2*x^5) + exp(4)*(6*x^2 - 2*x^5) - 6*x^2 + 2*x^5) - 9),x)

[Out]

-(x^3*(6*exp(x + x^2) - 12*exp(x + x^2 + 4) + 6*exp(x + x^2 + 8) - 12*exp(x + x^2)*log(x) + 12*exp(x + x^2 + 4
)*log(x) + 6*exp(x + x^2)*log(x)^2) - x^5*(exp(x + x^2 + 4) - exp(x + x^2) + exp(x + x^2)*log(x)) + x^6*(exp(x
 + x^2) - 2*exp(x + x^2 + 4) + exp(x + x^2 + 8) - 2*exp(x + x^2)*log(x) + 2*exp(x + x^2 + 4)*log(x) + exp(x +
x^2)*log(x)^2))/((x^2*log(exp(4) + log(x) - 1) - x^3 + 3)*(6*x + 6*x*log(x)^2 - x^3*log(x) - 2*x^4*log(x) - 12
*x*exp(4) + 6*x*exp(8) + x^4*log(x)^2 - x^3*exp(4) - 2*x^4*exp(4) + x^4*exp(8) - 12*x*log(x) + x^3 + x^4 + 12*
x*exp(4)*log(x) + 2*x^4*exp(4)*log(x)))