\(\int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} (-50-1250 x+1250 x^3+50 x^4) \log ^2(x)}{x^3 \log ^2(x)} \, dx\) [7417]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 60, antiderivative size = 19 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=e^{25 \left (25+\frac {1}{x}+x\right )^2}+\frac {4}{\log (x)} \]

[Out]

4/ln(x)+exp(25*(25+x+1/x)^2)

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.26, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6820, 14, 6838, 2339, 30} \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=e^{\frac {25 \left (x^2+25 x+1\right )^2}{x^2}}+\frac {4}{\log (x)} \]

[In]

Int[(-4*x^2 + E^((25 + 1250*x + 15675*x^2 + 1250*x^3 + 25*x^4)/x^2)*(-50 - 1250*x + 1250*x^3 + 50*x^4)*Log[x]^
2)/(x^3*Log[x]^2),x]

[Out]

E^((25*(1 + 25*x + x^2)^2)/x^2) + 4/Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2339

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6838

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q*(F^v/Log[F]), x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {50 e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}} \left (-1-25 x+25 x^3+x^4\right )-\frac {4 x^2}{\log ^2(x)}}{x^3} \, dx \\ & = \int \left (\frac {50 e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}} (-1+x) (1+x) \left (1+25 x+x^2\right )}{x^3}-\frac {4}{x \log ^2(x)}\right ) \, dx \\ & = -\left (4 \int \frac {1}{x \log ^2(x)} \, dx\right )+50 \int \frac {e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}} (-1+x) (1+x) \left (1+25 x+x^2\right )}{x^3} \, dx \\ & = e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}}-4 \text {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right ) \\ & = e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}}+\frac {4}{\log (x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.26 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=e^{\frac {25 \left (1+25 x+x^2\right )^2}{x^2}}+\frac {4}{\log (x)} \]

[In]

Integrate[(-4*x^2 + E^((25 + 1250*x + 15675*x^2 + 1250*x^3 + 25*x^4)/x^2)*(-50 - 1250*x + 1250*x^3 + 50*x^4)*L
og[x]^2)/(x^3*Log[x]^2),x]

[Out]

E^((25*(1 + 25*x + x^2)^2)/x^2) + 4/Log[x]

Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.26

method result size
risch \(\frac {4}{\ln \left (x \right )}+{\mathrm e}^{\frac {25 \left (x^{2}+25 x +1\right )^{2}}{x^{2}}}\) \(24\)
default \(\frac {4}{\ln \left (x \right )}+{\mathrm e}^{\frac {25 x^{4}+1250 x^{3}+15675 x^{2}+1250 x +25}{x^{2}}}\) \(33\)
parts \(\frac {4}{\ln \left (x \right )}+{\mathrm e}^{\frac {25 x^{4}+1250 x^{3}+15675 x^{2}+1250 x +25}{x^{2}}}\) \(33\)
parallelrisch \(-\frac {-{\mathrm e}^{\frac {25 x^{4}+1250 x^{3}+15675 x^{2}+1250 x +25}{x^{2}}} \ln \left (x \right )-4}{\ln \left (x \right )}\) \(37\)

[In]

int(((50*x^4+1250*x^3-1250*x-50)*exp((25*x^4+1250*x^3+15675*x^2+1250*x+25)/x^2)*ln(x)^2-4*x^2)/x^3/ln(x)^2,x,m
ethod=_RETURNVERBOSE)

[Out]

4/ln(x)+exp(25*(x^2+25*x+1)^2/x^2)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.79 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=\frac {e^{\left (\frac {25 \, {\left (x^{4} + 50 \, x^{3} + 627 \, x^{2} + 50 \, x + 1\right )}}{x^{2}}\right )} \log \left (x\right ) + 4}{\log \left (x\right )} \]

[In]

integrate(((50*x^4+1250*x^3-1250*x-50)*exp((25*x^4+1250*x^3+15675*x^2+1250*x+25)/x^2)*log(x)^2-4*x^2)/x^3/log(
x)^2,x, algorithm="fricas")

[Out]

(e^(25*(x^4 + 50*x^3 + 627*x^2 + 50*x + 1)/x^2)*log(x) + 4)/log(x)

Sympy [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.53 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=e^{\frac {25 x^{4} + 1250 x^{3} + 15675 x^{2} + 1250 x + 25}{x^{2}}} + \frac {4}{\log {\left (x \right )}} \]

[In]

integrate(((50*x**4+1250*x**3-1250*x-50)*exp((25*x**4+1250*x**3+15675*x**2+1250*x+25)/x**2)*ln(x)**2-4*x**2)/x
**3/ln(x)**2,x)

[Out]

exp((25*x**4 + 1250*x**3 + 15675*x**2 + 1250*x + 25)/x**2) + 4/log(x)

Maxima [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.63 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=\frac {e^{\left (25 \, x^{2} + 1250 \, x + \frac {1250}{x} + \frac {25}{x^{2}} + 15675\right )} \log \left (x\right ) + 4}{\log \left (x\right )} \]

[In]

integrate(((50*x^4+1250*x^3-1250*x-50)*exp((25*x^4+1250*x^3+15675*x^2+1250*x+25)/x^2)*log(x)^2-4*x^2)/x^3/log(
x)^2,x, algorithm="maxima")

[Out]

(e^(25*x^2 + 1250*x + 1250/x + 25/x^2 + 15675)*log(x) + 4)/log(x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.79 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=\frac {e^{\left (\frac {25 \, {\left (x^{4} + 50 \, x^{3} + 627 \, x^{2} + 50 \, x + 1\right )}}{x^{2}}\right )} \log \left (x\right ) + 4}{\log \left (x\right )} \]

[In]

integrate(((50*x^4+1250*x^3-1250*x-50)*exp((25*x^4+1250*x^3+15675*x^2+1250*x+25)/x^2)*log(x)^2-4*x^2)/x^3/log(
x)^2,x, algorithm="giac")

[Out]

(e^(25*(x^4 + 50*x^3 + 627*x^2 + 50*x + 1)/x^2)*log(x) + 4)/log(x)

Mupad [B] (verification not implemented)

Time = 12.13 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.68 \[ \int \frac {-4 x^2+e^{\frac {25+1250 x+15675 x^2+1250 x^3+25 x^4}{x^2}} \left (-50-1250 x+1250 x^3+50 x^4\right ) \log ^2(x)}{x^3 \log ^2(x)} \, dx=\frac {4}{\ln \left (x\right )}+{\mathrm {e}}^{1250\,x}\,{\mathrm {e}}^{15675}\,{\mathrm {e}}^{\frac {25}{x^2}}\,{\mathrm {e}}^{25\,x^2}\,{\mathrm {e}}^{1250/x} \]

[In]

int(-(4*x^2 + exp((1250*x + 15675*x^2 + 1250*x^3 + 25*x^4 + 25)/x^2)*log(x)^2*(1250*x - 1250*x^3 - 50*x^4 + 50
))/(x^3*log(x)^2),x)

[Out]

4/log(x) + exp(1250*x)*exp(15675)*exp(25/x^2)*exp(25*x^2)*exp(1250/x)