\(\int \frac {(-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx\) [7530]

   Optimal result
   Rubi [C] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 59, antiderivative size = 24 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=x^3 \left (-x+\frac {1}{25-\frac {5}{x}-x^2}\right ) \log (3) \]

[Out]

x^3*(1/(25-x^2-5/x)-x)*ln(3)

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 16.80 (sec) , antiderivative size = 2412, normalized size of antiderivative = 100.50, number of steps used = 19, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.169, Rules used = {12, 2099, 2126, 2104, 836, 814, 648, 632, 212, 642} \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx =\text {Too large to display} \]

[In]

Int[((-120*x^3 + 1075*x^4 - 2500*x^5 - 41*x^6 + 200*x^7 - 4*x^9)*Log[3])/(25 - 250*x + 625*x^2 + 10*x^3 - 50*x
^4 + x^6),x]

[Out]

-(x*Log[3]) - x^4*Log[3] - (150*(9 - I*Sqrt[7419])^(1/3)*Log[3])/(30^(1/3)*(10*15^(1/3) + 2^(1/3)*(9 - I*Sqrt[
7419])^(2/3)) + 6*(9 - I*Sqrt[7419])^(1/3)*x) + (45*2^(2/3)*(9 - I*Sqrt[7419])^(4/3)*(123650 - ((5*3^(1/6)*(24
73*Sqrt[3] + (15*I)*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3) - 2^(2/3)*15^(1/3)*(7419 + (1259*I)*Sqrt[74
19]))*x)/(9 - I*Sqrt[7419])^(2/3))*Log[3])/((10*3^(1/6)*5^(2/3)*(2473*Sqrt[3] + (9*I)*Sqrt[2473]) - 30^(1/3)*(
9 - I*Sqrt[7419])^(2/3)*(2473 + (3*I)*Sqrt[7419]))*((5*15^(2/3))/((9 - I*Sqrt[7419])/2)^(1/3) + ((15*(9 - I*Sq
rt[7419]))/2)^(1/3) + 3*x)*(150 - (750*15^(1/3))/((9 - I*Sqrt[7419])/2)^(2/3) - 2^(1/3)*(15*(9 - I*Sqrt[7419])
)^(2/3) + 6*((5*15^(2/3))/((9 - I*Sqrt[7419])/2)^(1/3) + ((15*(9 - I*Sqrt[7419]))/2)^(1/3))*x - 18*x^2)) - (12
50*Log[3])/(3*(5 - 25*x + x^3)) + (29676000*3^(1/6)*10^(1/3)*(10*5^(1/3)*((747743*I)*Sqrt[3] - 7419*Sqrt[2473]
) - (731111*I)*2^(1/3)*3^(1/6)*(9 - I*Sqrt[7419])^(2/3) + 3071*2^(1/3)*Sqrt[2473]*(27 - (3*I)*Sqrt[7419])^(2/3
))*ArcTanh[(30^(1/3)*((10*I)*(15*(9 - I*Sqrt[7419]))^(1/3) + 2^(1/3)*(9*I + Sqrt[7419])) - (12*I)*(9 - I*Sqrt[
7419])^(2/3)*x)/(6*Sqrt[-(2^(1/3)*3^(1/6)*5^(2/3)*(1223*Sqrt[3] + (9*I)*Sqrt[2473])) + 125*15^(1/3)*(18 - (2*I
)*Sqrt[7419])^(2/3) + (50*I)*(9 - I*Sqrt[7419])^(1/3)*(9*I + Sqrt[7419])])]*Log[3])/((250*2^(2/3)*15^(1/3) - 1
00*(9 - I*Sqrt[7419])^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3))*(250*2^(2
/3)*15^(1/3) + 50*(9 - I*Sqrt[7419])^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(
1/3))^3*Sqrt[-(2^(1/3)*3^(1/6)*5^(2/3)*(1223*Sqrt[3] + (9*I)*Sqrt[2473])) + 125*15^(1/3)*(18 - (2*I)*Sqrt[7419
])^(2/3) + (50*I)*(9 - I*Sqrt[7419])^(1/3)*(9*I + Sqrt[7419])]) - (10*3^(1/6)*10^(1/3)*(5*5^(1/3)*((1241*I)*Sq
rt[3] - 3*Sqrt[2473]) - (616*I)*2^(1/3)*3^(1/6)*(9 - I*Sqrt[7419])^(2/3) + 2^(1/3)*Sqrt[2473]*(27 - (3*I)*Sqrt
[7419])^(2/3))*ArcTanh[(30^(1/3)*((10*I)*(15*(9 - I*Sqrt[7419]))^(1/3) + 2^(1/3)*(9*I + Sqrt[7419])) - (12*I)*
(9 - I*Sqrt[7419])^(2/3)*x)/(6*Sqrt[-(2^(1/3)*3^(1/6)*5^(2/3)*(1223*Sqrt[3] + (9*I)*Sqrt[2473])) + 125*15^(1/3
)*(18 - (2*I)*Sqrt[7419])^(2/3) + (50*I)*(9 - I*Sqrt[7419])^(1/3)*(9*I + Sqrt[7419])])]*Log[3])/((250*2^(2/3)*
15^(1/3) + 50*(9 - I*Sqrt[7419])^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3)
)*Sqrt[-(2^(1/3)*3^(1/6)*5^(2/3)*(1223*Sqrt[3] + (9*I)*Sqrt[2473])) + 125*15^(1/3)*(18 - (2*I)*Sqrt[7419])^(2/
3) + (50*I)*(9 - I*Sqrt[7419])^(1/3)*(9*I + Sqrt[7419])]) - (5*(9 - I*Sqrt[7419])^(1/3)*(50*2^(1/3)*15^(2/3) +
 12*(9 - I*Sqrt[7419])^(1/3) + 5*15^(1/3)*(18 - (2*I)*Sqrt[7419])^(2/3))*Log[3]*Log[30^(1/3)*(10*15^(1/3) + 2^
(1/3)*(9 - I*Sqrt[7419])^(2/3)) + 6*(9 - I*Sqrt[7419])^(1/3)*x])/(3*(250*2^(2/3)*15^(1/3) + 50*(9 - I*Sqrt[741
9])^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3))) + (5*((7338*I - 18*Sqrt[74
19])*(9 - I*Sqrt[7419])^(2/3) + 5*3^(1/6)*((6115*I)*Sqrt[3] - 45*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3
) + 10*2^(2/3)*15^(1/3)*(8316*I + 299*Sqrt[7419]))*Log[3]*Log[30^(1/3)*(10*15^(1/3) + 2^(1/3)*(9 - I*Sqrt[7419
])^(2/3)) + 6*(9 - I*Sqrt[7419])^(1/3)*x])/(3*(125*2^(2/3)*15^(1/3)*(1223*I - 3*Sqrt[7419]) + (30575*I - 75*Sq
rt[7419])*(9 - I*Sqrt[7419])^(2/3) + 3^(1/6)*((5544*I)*Sqrt[3] + 598*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^
(1/3))) + (5*(9 - I*Sqrt[7419])^(2/3)*(12 + (50*15^(2/3))/((9 - I*Sqrt[7419])/2)^(1/3) + 5*2^(2/3)*(15*(9 - I*
Sqrt[7419]))^(1/3))*Log[3]*Log[I*(250*2^(2/3)*15^(1/3) - 50*(9 - I*Sqrt[7419])^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*
Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3)) - 2^(2/3)*15^(1/3)*(9*I + Sqrt[7419] + (5*I)*2^(2/3)*(15*(9 -
I*Sqrt[7419]))^(1/3))*x + (6*I)*(9 - I*Sqrt[7419])^(2/3)*x^2])/(6*(250*2^(2/3)*15^(1/3) + 50*(9 - I*Sqrt[7419]
)^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3))) - (5*(6*(9 - I*Sqrt[7419])^(
2/3)*(1223 + (3*I)*Sqrt[7419]) + 25*3^(1/6)*(1223*Sqrt[3] + (9*I)*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/
3) + 10*2^(2/3)*15^(1/3)*(8316 - (299*I)*Sqrt[7419]))*Log[3]*Log[I*(250*2^(2/3)*15^(1/3) - 50*(9 - I*Sqrt[7419
])^(2/3) + 3^(1/6)*(3*Sqrt[3] - I*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3)) - 2^(2/3)*15^(1/3)*(9*I + Sq
rt[7419] + (5*I)*2^(2/3)*(15*(9 - I*Sqrt[7419]))^(1/3))*x + (6*I)*(9 - I*Sqrt[7419])^(2/3)*x^2])/(6*(125*2^(2/
3)*15^(1/3)*(1223 + (3*I)*Sqrt[7419]) + 25*(9 - I*Sqrt[7419])^(2/3)*(1223 + (3*I)*Sqrt[7419]) + 3^(1/6)*(5544*
Sqrt[3] - (598*I)*Sqrt[2473])*(10*(45 - (5*I)*Sqrt[7419]))^(1/3)))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 2099

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rule 2104

Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + S
qrt[3]*d*Sqrt[4*b^3*d + 27*a^2*d^2], 3]}, Dist[1/d^(2*p), Int[(e + f*x)^m*Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/
3) + d*x, x]^p*Simp[b*(d/3) + 12^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r
/18^(1/3))*x + d^2*x^2, x]^p, x], x]] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && ILtQ[p, 0
]

Rule 2126

Int[(Pm_)*(Qn_)^(p_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*(Qn^(p + 1)
/(n*(p + 1)*Coeff[Qn, x, n])), x] + Dist[1/(n*Coeff[Qn, x, n]), Int[ExpandToSum[n*Coeff[Qn, x, n]*Pm - Coeff[P
m, x, m]*D[Qn, x], x]*Qn^p, x], x] /; EqQ[m, n - 1]] /; FreeQ[p, x] && PolyQ[Pm, x] && PolyQ[Qn, x] && NeQ[p,
-1]

Rubi steps \begin{align*} \text {integral}& = \log (3) \int \frac {-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx \\ & = \log (3) \int \left (-1-4 x^3+\frac {25 \left (3-25 x+50 x^2\right )}{\left (5-25 x+x^3\right )^2}+\frac {5 (-2+5 x)}{5-25 x+x^3}\right ) \, dx \\ & = -x \log (3)-x^4 \log (3)+(5 \log (3)) \int \frac {-2+5 x}{5-25 x+x^3} \, dx+(25 \log (3)) \int \frac {3-25 x+50 x^2}{\left (5-25 x+x^3\right )^2} \, dx \\ & = -x \log (3)-x^4 \log (3)-\frac {1250 \log (3)}{3 \left (5-25 x+x^3\right )}+(5 \log (3)) \int \frac {-2+5 x}{\left (\frac {1}{3} \left (\frac {5\ 15^{2/3}}{\sqrt [3]{\frac {1}{2} \left (9-i \sqrt {7419}\right )}}+\sqrt [3]{\frac {15}{2} \left (9-i \sqrt {7419}\right )}\right )+x\right ) \left (\frac {1}{18} \left (-150+\frac {750 \sqrt [3]{15}}{\left (\frac {1}{2} \left (9-i \sqrt {7419}\right )\right )^{2/3}}+\sqrt [3]{2} \left (15 \left (9-i \sqrt {7419}\right )\right )^{2/3}\right )-\frac {1}{3} \left (\frac {5\ 15^{2/3}}{\sqrt [3]{\frac {1}{2} \left (9-i \sqrt {7419}\right )}}+\sqrt [3]{\frac {15}{2} \left (9-i \sqrt {7419}\right )}\right ) x+x^2\right )} \, dx+\frac {1}{3} (25 \log (3)) \int \frac {1259-75 x}{\left (5-25 x+x^3\right )^2} \, dx \\ & = -x \log (3)-x^4 \log (3)-\frac {1250 \log (3)}{3 \left (5-25 x+x^3\right )}+(5 \log (3)) \int \left (\frac {2 \left (9-i \sqrt {7419}\right )^{2/3} \left (-50 \sqrt [3]{2} 15^{2/3}-12 \sqrt [3]{9-i \sqrt {7419}}-5 \sqrt [3]{15} \left (18-2 i \sqrt {7419}\right )^{2/3}\right )}{\left (250\ 2^{2/3} \sqrt [3]{15}+50 \left (9-i \sqrt {7419}\right )^{2/3}+\sqrt [6]{3} \left (3 \sqrt {3}-i \sqrt {2473}\right ) \sqrt [3]{10 \left (45-5 i \sqrt {7419}\right )}\right ) \left (10 \sqrt [3]{2} 15^{2/3}+\sqrt [3]{15} \left (2 \left (9-i \sqrt {7419}\right )\right )^{2/3}+6 \sqrt [3]{9-i \sqrt {7419}} x\right )}+\frac {2 \left (9-i \sqrt {7419}\right )^{2/3} \left (2\ 2^{2/3} \sqrt [3]{15} \left (607 i-2 \sqrt {7419}\right )-250 i \left (9-i \sqrt {7419}\right )^{2/3}-5 \sqrt [6]{3} \left (5 i \sqrt {3}-\sqrt {2473}\right ) \sqrt [3]{10 \left (45-5 i \sqrt {7419}\right )}+\left (12 i \left (9-i \sqrt {7419}\right )^{2/3}+5 \sqrt [3]{30} \left (10 i \sqrt [3]{15 \left (9-i \sqrt {7419}\right )}+\sqrt [3]{2} \left (9 i+\sqrt {7419}\right )\right )\right ) x\right )}{\left (250\ 2^{2/3} \sqrt [3]{15}+50 \left (9-i \sqrt {7419}\right )^{2/3}+\sqrt [6]{3} \left (3 \sqrt {3}-i \sqrt {2473}\right ) \sqrt [3]{10 \left (45-5 i \sqrt {7419}\right )}\right ) \left (i \left (250\ 2^{2/3} \sqrt [3]{15}-50 \left (9-i \sqrt {7419}\right )^{2/3}+\sqrt [6]{3} \left (3 \sqrt {3}-i \sqrt {2473}\right ) \sqrt [3]{10 \left (45-5 i \sqrt {7419}\right )}\right )-\sqrt [3]{30} \left (10 i \sqrt [3]{15 \left (9-i \sqrt {7419}\right )}+\sqrt [3]{2} \left (9 i+\sqrt {7419}\right )\right ) x+6 i \left (9-i \sqrt {7419}\right )^{2/3} x^2\right )}\right ) \, dx+\frac {1}{3} (25 \log (3)) \int \frac {1259-75 x}{\left (\frac {1}{3} \left (\frac {5\ 15^{2/3}}{\sqrt [3]{\frac {1}{2} \left (9-i \sqrt {7419}\right )}}+\sqrt [3]{\frac {15}{2} \left (9-i \sqrt {7419}\right )}\right )+x\right )^2 \left (\frac {1}{18} \left (-150+\frac {750 \sqrt [3]{15}}{\left (\frac {1}{2} \left (9-i \sqrt {7419}\right )\right )^{2/3}}+\sqrt [3]{2} \left (15 \left (9-i \sqrt {7419}\right )\right )^{2/3}\right )-\frac {1}{3} \left (\frac {5\ 15^{2/3}}{\sqrt [3]{\frac {1}{2} \left (9-i \sqrt {7419}\right )}}+\sqrt [3]{\frac {15}{2} \left (9-i \sqrt {7419}\right )}\right ) x+x^2\right )^2} \, dx \\ & = \text {Too large to display} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.04 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=-\frac {x^4 \left (6-25 x+x^3\right ) \log (3)}{5-25 x+x^3} \]

[In]

Integrate[((-120*x^3 + 1075*x^4 - 2500*x^5 - 41*x^6 + 200*x^7 - 4*x^9)*Log[3])/(25 - 250*x + 625*x^2 + 10*x^3
- 50*x^4 + x^6),x]

[Out]

-((x^4*(6 - 25*x + x^3)*Log[3])/(5 - 25*x + x^3))

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.08

method result size
gosper \(-\frac {x^{4} \left (x^{3}-25 x +6\right ) \ln \left (3\right )}{x^{3}-25 x +5}\) \(26\)
parallelrisch \(-\frac {\ln \left (3\right ) \left (x^{7}-25 x^{5}+6 x^{4}\right )}{x^{3}-25 x +5}\) \(29\)
default \(\ln \left (3\right ) \left (-x^{4}-x +\frac {-25 x^{2}+5 x}{x^{3}-25 x +5}\right )\) \(32\)
norman \(\frac {-6 x^{4} \ln \left (3\right )+25 x^{5} \ln \left (3\right )-\ln \left (3\right ) x^{7}}{x^{3}-25 x +5}\) \(34\)
risch \(-x^{4} \ln \left (3\right )-x \ln \left (3\right )+\frac {\ln \left (3\right ) \left (-25 x^{2}+5 x \right )}{x^{3}-25 x +5}\) \(36\)

[In]

int((-4*x^9+200*x^7-41*x^6-2500*x^5+1075*x^4-120*x^3)*ln(3)/(x^6-50*x^4+10*x^3+625*x^2-250*x+25),x,method=_RET
URNVERBOSE)

[Out]

-x^4*(x^3-25*x+6)*ln(3)/(x^3-25*x+5)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.17 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=-\frac {{\left (x^{7} - 25 \, x^{5} + 6 \, x^{4}\right )} \log \left (3\right )}{x^{3} - 25 \, x + 5} \]

[In]

integrate((-4*x^9+200*x^7-41*x^6-2500*x^5+1075*x^4-120*x^3)*log(3)/(x^6-50*x^4+10*x^3+625*x^2-250*x+25),x, alg
orithm="fricas")

[Out]

-(x^7 - 25*x^5 + 6*x^4)*log(3)/(x^3 - 25*x + 5)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 36 vs. \(2 (17) = 34\).

Time = 0.15 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.50 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=- x^{4} \log {\left (3 \right )} - x \log {\left (3 \right )} - \frac {25 x^{2} \log {\left (3 \right )} - 5 x \log {\left (3 \right )}}{x^{3} - 25 x + 5} \]

[In]

integrate((-4*x**9+200*x**7-41*x**6-2500*x**5+1075*x**4-120*x**3)*ln(3)/(x**6-50*x**4+10*x**3+625*x**2-250*x+2
5),x)

[Out]

-x**4*log(3) - x*log(3) - (25*x**2*log(3) - 5*x*log(3))/(x**3 - 25*x + 5)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.25 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=-{\left (x^{4} + x + \frac {5 \, {\left (5 \, x^{2} - x\right )}}{x^{3} - 25 \, x + 5}\right )} \log \left (3\right ) \]

[In]

integrate((-4*x^9+200*x^7-41*x^6-2500*x^5+1075*x^4-120*x^3)*log(3)/(x^6-50*x^4+10*x^3+625*x^2-250*x+25),x, alg
orithm="maxima")

[Out]

-(x^4 + x + 5*(5*x^2 - x)/(x^3 - 25*x + 5))*log(3)

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.25 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=-{\left (x^{4} + x + \frac {5 \, {\left (5 \, x^{2} - x\right )}}{x^{3} - 25 \, x + 5}\right )} \log \left (3\right ) \]

[In]

integrate((-4*x^9+200*x^7-41*x^6-2500*x^5+1075*x^4-120*x^3)*log(3)/(x^6-50*x^4+10*x^3+625*x^2-250*x+25),x, alg
orithm="giac")

[Out]

-(x^4 + x + 5*(5*x^2 - x)/(x^3 - 25*x + 5))*log(3)

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.04 \[ \int \frac {\left (-120 x^3+1075 x^4-2500 x^5-41 x^6+200 x^7-4 x^9\right ) \log (3)}{25-250 x+625 x^2+10 x^3-50 x^4+x^6} \, dx=-\frac {x^4\,\ln \left (3\right )\,\left (x^3-25\,x+6\right )}{x^3-25\,x+5} \]

[In]

int(-(log(3)*(120*x^3 - 1075*x^4 + 2500*x^5 + 41*x^6 - 200*x^7 + 4*x^9))/(625*x^2 - 250*x + 10*x^3 - 50*x^4 +
x^6 + 25),x)

[Out]

-(x^4*log(3)*(x^3 - 25*x + 6))/(x^3 - 25*x + 5)