\(\int \frac {436+784 x-13 x^2+4 x^3+2 x^4+(-16+8 x+7 x^2-2 x^3-x^4) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx\) [7633]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 64, antiderivative size = 25 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=2 x+\frac {400+x}{4-x-x^2}-x \log (3) \]

[Out]

2*x+(400+x)/(-x^2-x+4)-x*ln(3)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1694, 1828, 21, 8} \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=\frac {4 (x+400)}{17-4 \left (x+\frac {1}{2}\right )^2}+x (2-\log (3)) \]

[In]

Int[(436 + 784*x - 13*x^2 + 4*x^3 + 2*x^4 + (-16 + 8*x + 7*x^2 - 2*x^3 - x^4)*Log[3])/(16 - 8*x - 7*x^2 + 2*x^
3 + x^4),x]

[Out]

(4*(400 + x))/(17 - 4*(1/2 + x)^2) + x*(2 - Log[3])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 1694

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -d/(4*e) + x)*(a + d^4/(256*e^3)
- b*(d/(8*e)) + (c - 3*(d^2/(8*e)))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0]
 && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rule 1828

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*
g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {12784 x-8 x^2 (32-17 \log (3))+17 (38-17 \log (3))+16 x^4 (2-\log (3))}{\left (17-4 x^2\right )^2} \, dx,x,\frac {1}{2}+x\right ) \\ & = \frac {4 (400+x)}{17-4 \left (\frac {1}{2}+x\right )^2}-\frac {1}{34} \text {Subst}\left (\int \frac {-578 (2-\log (3))+136 x^2 (2-\log (3))}{17-4 x^2} \, dx,x,\frac {1}{2}+x\right ) \\ & = \frac {4 (400+x)}{17-4 \left (\frac {1}{2}+x\right )^2}-(-2+\log (3)) \text {Subst}\left (\int 1 \, dx,x,\frac {1}{2}+x\right ) \\ & = \frac {4 (400+x)}{17-4 \left (\frac {1}{2}+x\right )^2}+x (2-\log (3)) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.92 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=\frac {-400-x}{-4+x+x^2}+x (2-\log (3)) \]

[In]

Integrate[(436 + 784*x - 13*x^2 + 4*x^3 + 2*x^4 + (-16 + 8*x + 7*x^2 - 2*x^3 - x^4)*Log[3])/(16 - 8*x - 7*x^2
+ 2*x^3 + x^4),x]

[Out]

(-400 - x)/(-4 + x + x^2) + x*(2 - Log[3])

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.96

method result size
default \(2 x -x \ln \left (3\right )+\frac {-x -400}{x^{2}+x -4}\) \(24\)
risch \(2 x -x \ln \left (3\right )+\frac {-x -400}{x^{2}+x -4}\) \(24\)
norman \(\frac {\left (2-\ln \left (3\right )\right ) x^{3}+\left (5 \ln \left (3\right )-11\right ) x -392-4 \ln \left (3\right )}{x^{2}+x -4}\) \(34\)
gosper \(-\frac {x^{3} \ln \left (3\right )-2 x^{3}-5 x \ln \left (3\right )+4 \ln \left (3\right )+11 x +392}{x^{2}+x -4}\) \(36\)
parallelrisch \(-\frac {x^{3} \ln \left (3\right )-2 x^{3}-5 x \ln \left (3\right )+4 \ln \left (3\right )+11 x +392}{x^{2}+x -4}\) \(36\)

[In]

int(((-x^4-2*x^3+7*x^2+8*x-16)*ln(3)+2*x^4+4*x^3-13*x^2+784*x+436)/(x^4+2*x^3-7*x^2-8*x+16),x,method=_RETURNVE
RBOSE)

[Out]

2*x-x*ln(3)+(-x-400)/(x^2+x-4)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.52 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=\frac {2 \, x^{3} + 2 \, x^{2} - {\left (x^{3} + x^{2} - 4 \, x\right )} \log \left (3\right ) - 9 \, x - 400}{x^{2} + x - 4} \]

[In]

integrate(((-x^4-2*x^3+7*x^2+8*x-16)*log(3)+2*x^4+4*x^3-13*x^2+784*x+436)/(x^4+2*x^3-7*x^2-8*x+16),x, algorith
m="fricas")

[Out]

(2*x^3 + 2*x^2 - (x^3 + x^2 - 4*x)*log(3) - 9*x - 400)/(x^2 + x - 4)

Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.68 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=x \left (2 - \log {\left (3 \right )}\right ) + \frac {- x - 400}{x^{2} + x - 4} \]

[In]

integrate(((-x**4-2*x**3+7*x**2+8*x-16)*ln(3)+2*x**4+4*x**3-13*x**2+784*x+436)/(x**4+2*x**3-7*x**2-8*x+16),x)

[Out]

x*(2 - log(3)) + (-x - 400)/(x**2 + x - 4)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.84 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=-x {\left (\log \left (3\right ) - 2\right )} - \frac {x + 400}{x^{2} + x - 4} \]

[In]

integrate(((-x^4-2*x^3+7*x^2+8*x-16)*log(3)+2*x^4+4*x^3-13*x^2+784*x+436)/(x^4+2*x^3-7*x^2-8*x+16),x, algorith
m="maxima")

[Out]

-x*(log(3) - 2) - (x + 400)/(x^2 + x - 4)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.88 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=-x \log \left (3\right ) + 2 \, x - \frac {x + 400}{x^{2} + x - 4} \]

[In]

integrate(((-x^4-2*x^3+7*x^2+8*x-16)*log(3)+2*x^4+4*x^3-13*x^2+784*x+436)/(x^4+2*x^3-7*x^2-8*x+16),x, algorith
m="giac")

[Out]

-x*log(3) + 2*x - (x + 400)/(x^2 + x - 4)

Mupad [B] (verification not implemented)

Time = 12.95 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.84 \[ \int \frac {436+784 x-13 x^2+4 x^3+2 x^4+\left (-16+8 x+7 x^2-2 x^3-x^4\right ) \log (3)}{16-8 x-7 x^2+2 x^3+x^4} \, dx=-\frac {x+400}{x^2+x-4}-x\,\left (\ln \left (3\right )-2\right ) \]

[In]

int((784*x - log(3)*(2*x^3 - 7*x^2 - 8*x + x^4 + 16) - 13*x^2 + 4*x^3 + 2*x^4 + 436)/(2*x^3 - 7*x^2 - 8*x + x^
4 + 16),x)

[Out]

- (x + 400)/(x + x^2 - 4) - x*(log(3) - 2)