\(\int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x))}{2 x^7} \, dx\) [7710]

   Optimal result
   Rubi [B] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 65, antiderivative size = 19 \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=\left (1+e^{-\frac {1}{2} x \left (\frac {625}{x^8}+\log (x)\right )}\right ) x \]

[Out]

(1/exp(1/2*(625/x^8+ln(x))*x)+1)*x

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(67\) vs. \(2(19)=38\).

Time = 0.93 (sec) , antiderivative size = 67, normalized size of antiderivative = 3.53, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 6874, 6820, 8, 2326} \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=x-\frac {e^{-\frac {625}{2 x^7}} x^{-\frac {x}{2}-7} \left (-x^8+x^8 (-\log (x))+4375\right )}{\frac {x^7+8 x^7 \log (x)}{x^7}-\frac {7 \left (x^8 \log (x)+625\right )}{x^8}} \]

[In]

Int[(4375 + 2*x^7 + 2*E^((625 + x^8*Log[x])/(2*x^7))*x^7 - x^8 - x^8*Log[x])/(2*E^((625 + x^8*Log[x])/(2*x^7))
*x^7),x]

[Out]

x - (x^(-7 - x/2)*(4375 - x^8 - x^8*Log[x]))/(E^(625/(2*x^7))*((x^7 + 8*x^7*Log[x])/x^7 - (7*(625 + x^8*Log[x]
))/x^8))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{x^7} \, dx \\ & = \frac {1}{2} \int \left (2 e^{\frac {625}{2 x^7}-\frac {625+x^8 \log (x)}{2 x^7}} x^{x/2}+\frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7-x^8-x^8 \log (x)\right )}{x^7}\right ) \, dx \\ & = \frac {1}{2} \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7-x^8-x^8 \log (x)\right )}{x^7} \, dx+\int e^{\frac {625}{2 x^7}-\frac {625+x^8 \log (x)}{2 x^7}} x^{x/2} \, dx \\ & = -\frac {e^{-\frac {625}{2 x^7}} x^{-7-\frac {x}{2}} \left (4375-x^8-x^8 \log (x)\right )}{\frac {x^7+8 x^7 \log (x)}{x^7}-\frac {7 \left (625+x^8 \log (x)\right )}{x^8}}+\int 1 \, dx \\ & = x-\frac {e^{-\frac {625}{2 x^7}} x^{-7-\frac {x}{2}} \left (4375-x^8-x^8 \log (x)\right )}{\frac {x^7+8 x^7 \log (x)}{x^7}-\frac {7 \left (625+x^8 \log (x)\right )}{x^8}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.47 \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=\frac {1}{2} \left (2 x+2 e^{-\frac {625}{2 x^7}} x^{1-\frac {x}{2}}\right ) \]

[In]

Integrate[(4375 + 2*x^7 + 2*E^((625 + x^8*Log[x])/(2*x^7))*x^7 - x^8 - x^8*Log[x])/(2*E^((625 + x^8*Log[x])/(2
*x^7))*x^7),x]

[Out]

(2*x + (2*x^(1 - x/2))/E^(625/(2*x^7)))/2

Maple [A] (verified)

Time = 1.02 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.95

method result size
risch \(x +x \,x^{-\frac {x}{2}} {\mathrm e}^{-\frac {625}{2 x^{7}}}\) \(18\)
parallelrisch \(-\frac {\left (-2 \,{\mathrm e}^{\frac {x^{8} \ln \left (x \right )+625}{2 x^{7}}} x^{8}-2 x^{8}\right ) {\mathrm e}^{-\frac {x^{8} \ln \left (x \right )+625}{2 x^{7}}}}{2 x^{7}}\) \(47\)

[In]

int(1/2*(2*x^7*exp(1/2*(x^8*ln(x)+625)/x^7)-x^8*ln(x)-x^8+2*x^7+4375)/x^7/exp(1/2*(x^8*ln(x)+625)/x^7),x,metho
d=_RETURNVERBOSE)

[Out]

x+x/(x^(1/2*x))*exp(-625/2/x^7)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 33 vs. \(2 (16) = 32\).

Time = 0.29 (sec) , antiderivative size = 33, normalized size of antiderivative = 1.74 \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx={\left (x e^{\left (\frac {x^{8} \log \left (x\right ) + 625}{2 \, x^{7}}\right )} + x\right )} e^{\left (-\frac {x^{8} \log \left (x\right ) + 625}{2 \, x^{7}}\right )} \]

[In]

integrate(1/2*(2*x^7*exp(1/2*(x^8*log(x)+625)/x^7)-x^8*log(x)-x^8+2*x^7+4375)/x^7/exp(1/2*(x^8*log(x)+625)/x^7
),x, algorithm="fricas")

[Out]

(x*e^(1/2*(x^8*log(x) + 625)/x^7) + x)*e^(-1/2*(x^8*log(x) + 625)/x^7)

Sympy [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.00 \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=x + x e^{- \frac {\frac {x^{8} \log {\left (x \right )}}{2} + \frac {625}{2}}{x^{7}}} \]

[In]

integrate(1/2*(2*x**7*exp(1/2*(x**8*ln(x)+625)/x**7)-x**8*ln(x)-x**8+2*x**7+4375)/x**7/exp(1/2*(x**8*ln(x)+625
)/x**7),x)

[Out]

x + x*exp(-(x**8*log(x)/2 + 625/2)/x**7)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.84 \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=x e^{\left (-\frac {1}{2} \, x \log \left (x\right ) - \frac {625}{2 \, x^{7}}\right )} + x \]

[In]

integrate(1/2*(2*x^7*exp(1/2*(x^8*log(x)+625)/x^7)-x^8*log(x)-x^8+2*x^7+4375)/x^7/exp(1/2*(x^8*log(x)+625)/x^7
),x, algorithm="maxima")

[Out]

x*e^(-1/2*x*log(x) - 625/2/x^7) + x

Giac [F]

\[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=\int { -\frac {{\left (x^{8} \log \left (x\right ) + x^{8} - 2 \, x^{7} e^{\left (\frac {x^{8} \log \left (x\right ) + 625}{2 \, x^{7}}\right )} - 2 \, x^{7} - 4375\right )} e^{\left (-\frac {x^{8} \log \left (x\right ) + 625}{2 \, x^{7}}\right )}}{2 \, x^{7}} \,d x } \]

[In]

integrate(1/2*(2*x^7*exp(1/2*(x^8*log(x)+625)/x^7)-x^8*log(x)-x^8+2*x^7+4375)/x^7/exp(1/2*(x^8*log(x)+625)/x^7
),x, algorithm="giac")

[Out]

integrate(-1/2*(x^8*log(x) + x^8 - 2*x^7*e^(1/2*(x^8*log(x) + 625)/x^7) - 2*x^7 - 4375)*e^(-1/2*(x^8*log(x) +
625)/x^7)/x^7, x)

Mupad [B] (verification not implemented)

Time = 12.97 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.84 \[ \int \frac {e^{-\frac {625+x^8 \log (x)}{2 x^7}} \left (4375+2 x^7+2 e^{\frac {625+x^8 \log (x)}{2 x^7}} x^7-x^8-x^8 \log (x)\right )}{2 x^7} \, dx=x\,\left ({\mathrm {e}}^{-\frac {x\,\ln \left (x\right )}{2}-\frac {625}{2\,x^7}}+1\right ) \]

[In]

int((exp(-((x^8*log(x))/2 + 625/2)/x^7)*(x^7*exp(((x^8*log(x))/2 + 625/2)/x^7) - (x^8*log(x))/2 + x^7 - x^8/2
+ 4375/2))/x^7,x)

[Out]

x*(exp(- (x*log(x))/2 - 625/(2*x^7)) + 1)