\(\int \frac {e^{-4 x} (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x))}{x} \, dx\) [7751]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 86, antiderivative size = 18 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx=e^{4 e^4-4 x} (4+\log (x))^4 \]

[Out]

(ln(x)+4)^4*exp(exp(4))^4/exp(2*x)^2

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.61, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6820, 12, 2326} \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx=\frac {e^{4 e^4-4 x} (\log (x)+4)^3 (4 x+x \log (x))}{x} \]

[In]

Int[(E^(4*E^4)*(256 - 1024*x) + E^(4*E^4)*(192 - 1024*x)*Log[x] + E^(4*E^4)*(48 - 384*x)*Log[x]^2 + E^(4*E^4)*
(4 - 64*x)*Log[x]^3 - 4*E^(4*E^4)*x*Log[x]^4)/(E^(4*x)*x),x]

[Out]

(E^(4*E^4 - 4*x)*(4 + Log[x])^3*(4*x + x*Log[x]))/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {4 e^{4 e^4-4 x} (4+\log (x))^3 (1-4 x-x \log (x))}{x} \, dx \\ & = 4 \int \frac {e^{4 e^4-4 x} (4+\log (x))^3 (1-4 x-x \log (x))}{x} \, dx \\ & = \frac {e^{4 e^4-4 x} (4+\log (x))^3 (4 x+x \log (x))}{x} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx=e^{4 e^4-4 x} (4+\log (x))^4 \]

[In]

Integrate[(E^(4*E^4)*(256 - 1024*x) + E^(4*E^4)*(192 - 1024*x)*Log[x] + E^(4*E^4)*(48 - 384*x)*Log[x]^2 + E^(4
*E^4)*(4 - 64*x)*Log[x]^3 - 4*E^(4*E^4)*x*Log[x]^4)/(E^(4*x)*x),x]

[Out]

E^(4*E^4 - 4*x)*(4 + Log[x])^4

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(56\) vs. \(2(18)=36\).

Time = 0.22 (sec) , antiderivative size = 57, normalized size of antiderivative = 3.17

method result size
parallelrisch \(\left ({\mathrm e}^{4 \,{\mathrm e}^{4}} \ln \left (x \right )^{4}+16 \,{\mathrm e}^{4 \,{\mathrm e}^{4}} \ln \left (x \right )^{3}+96 \,{\mathrm e}^{4 \,{\mathrm e}^{4}} \ln \left (x \right )^{2}+256 \,{\mathrm e}^{4 \,{\mathrm e}^{4}} \ln \left (x \right )+256 \,{\mathrm e}^{4 \,{\mathrm e}^{4}}\right ) {\mathrm e}^{-4 x}\) \(57\)
risch \(\ln \left (x \right )^{4} {\mathrm e}^{4 \,{\mathrm e}^{4}-4 x}+16 \ln \left (x \right )^{3} {\mathrm e}^{4 \,{\mathrm e}^{4}-4 x}+96 \ln \left (x \right )^{2} {\mathrm e}^{4 \,{\mathrm e}^{4}-4 x}+256 \ln \left (x \right ) {\mathrm e}^{4 \,{\mathrm e}^{4}-4 x}+256 \,{\mathrm e}^{4 \,{\mathrm e}^{4}-4 x}\) \(70\)

[In]

int((-4*x*exp(exp(4))^4*ln(x)^4+(-64*x+4)*exp(exp(4))^4*ln(x)^3+(-384*x+48)*exp(exp(4))^4*ln(x)^2+(-1024*x+192
)*exp(exp(4))^4*ln(x)+(-1024*x+256)*exp(exp(4))^4)/x/exp(2*x)^2,x,method=_RETURNVERBOSE)

[Out]

(exp(exp(4))^4*ln(x)^4+16*exp(exp(4))^4*ln(x)^3+96*exp(exp(4))^4*ln(x)^2+256*exp(exp(4))^4*ln(x)+256*exp(exp(4
))^4)/exp(2*x)^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (16) = 32\).

Time = 0.31 (sec) , antiderivative size = 69, normalized size of antiderivative = 3.83 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx=e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right )^{4} + 16 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right )^{3} + 96 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right )^{2} + 256 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right ) + 256 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \]

[In]

integrate((-4*x*exp(exp(4))^4*log(x)^4+(-64*x+4)*exp(exp(4))^4*log(x)^3+(-384*x+48)*exp(exp(4))^4*log(x)^2+(-1
024*x+192)*exp(exp(4))^4*log(x)+(-1024*x+256)*exp(exp(4))^4)/x/exp(2*x)^2,x, algorithm="fricas")

[Out]

e^(-4*x + 4*e^4)*log(x)^4 + 16*e^(-4*x + 4*e^4)*log(x)^3 + 96*e^(-4*x + 4*e^4)*log(x)^2 + 256*e^(-4*x + 4*e^4)
*log(x) + 256*e^(-4*x + 4*e^4)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (17) = 34\).

Time = 0.27 (sec) , antiderivative size = 63, normalized size of antiderivative = 3.50 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx=\left (e^{4 e^{4}} \log {\left (x \right )}^{4} + 16 e^{4 e^{4}} \log {\left (x \right )}^{3} + 96 e^{4 e^{4}} \log {\left (x \right )}^{2} + 256 e^{4 e^{4}} \log {\left (x \right )} + 256 e^{4 e^{4}}\right ) e^{- 4 x} \]

[In]

integrate((-4*x*exp(exp(4))**4*ln(x)**4+(-64*x+4)*exp(exp(4))**4*ln(x)**3+(-384*x+48)*exp(exp(4))**4*ln(x)**2+
(-1024*x+192)*exp(exp(4))**4*ln(x)+(-1024*x+256)*exp(exp(4))**4)/x/exp(2*x)**2,x)

[Out]

(exp(4*exp(4))*log(x)**4 + 16*exp(4*exp(4))*log(x)**3 + 96*exp(4*exp(4))*log(x)**2 + 256*exp(4*exp(4))*log(x)
+ 256*exp(4*exp(4)))*exp(-4*x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (16) = 32\).

Time = 0.29 (sec) , antiderivative size = 63, normalized size of antiderivative = 3.50 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx={\left (e^{\left (4 \, e^{4}\right )} \log \left (x\right )^{4} + 16 \, e^{\left (4 \, e^{4}\right )} \log \left (x\right )^{3} + 96 \, e^{\left (4 \, e^{4}\right )} \log \left (x\right )^{2}\right )} e^{\left (-4 \, x\right )} + 256 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right ) + 256 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \]

[In]

integrate((-4*x*exp(exp(4))^4*log(x)^4+(-64*x+4)*exp(exp(4))^4*log(x)^3+(-384*x+48)*exp(exp(4))^4*log(x)^2+(-1
024*x+192)*exp(exp(4))^4*log(x)+(-1024*x+256)*exp(exp(4))^4)/x/exp(2*x)^2,x, algorithm="maxima")

[Out]

(e^(4*e^4)*log(x)^4 + 16*e^(4*e^4)*log(x)^3 + 96*e^(4*e^4)*log(x)^2)*e^(-4*x) + 256*e^(-4*x + 4*e^4)*log(x) +
256*e^(-4*x + 4*e^4)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (16) = 32\).

Time = 0.26 (sec) , antiderivative size = 69, normalized size of antiderivative = 3.83 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx=e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right )^{4} + 16 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right )^{3} + 96 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right )^{2} + 256 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \log \left (x\right ) + 256 \, e^{\left (-4 \, x + 4 \, e^{4}\right )} \]

[In]

integrate((-4*x*exp(exp(4))^4*log(x)^4+(-64*x+4)*exp(exp(4))^4*log(x)^3+(-384*x+48)*exp(exp(4))^4*log(x)^2+(-1
024*x+192)*exp(exp(4))^4*log(x)+(-1024*x+256)*exp(exp(4))^4)/x/exp(2*x)^2,x, algorithm="giac")

[Out]

e^(-4*x + 4*e^4)*log(x)^4 + 16*e^(-4*x + 4*e^4)*log(x)^3 + 96*e^(-4*x + 4*e^4)*log(x)^2 + 256*e^(-4*x + 4*e^4)
*log(x) + 256*e^(-4*x + 4*e^4)

Mupad [B] (verification not implemented)

Time = 12.52 (sec) , antiderivative size = 69, normalized size of antiderivative = 3.83 \[ \int \frac {e^{-4 x} \left (e^{4 e^4} (256-1024 x)+e^{4 e^4} (192-1024 x) \log (x)+e^{4 e^4} (48-384 x) \log ^2(x)+e^{4 e^4} (4-64 x) \log ^3(x)-4 e^{4 e^4} x \log ^4(x)\right )}{x} \, dx={\mathrm {e}}^{4\,{\mathrm {e}}^4-4\,x}\,{\ln \left (x\right )}^4+16\,{\mathrm {e}}^{4\,{\mathrm {e}}^4-4\,x}\,{\ln \left (x\right )}^3+96\,{\mathrm {e}}^{4\,{\mathrm {e}}^4-4\,x}\,{\ln \left (x\right )}^2+256\,{\mathrm {e}}^{4\,{\mathrm {e}}^4-4\,x}\,\ln \left (x\right )+256\,{\mathrm {e}}^{4\,{\mathrm {e}}^4-4\,x} \]

[In]

int(-(exp(-4*x)*(exp(4*exp(4))*(1024*x - 256) + exp(4*exp(4))*log(x)^3*(64*x - 4) + exp(4*exp(4))*log(x)^2*(38
4*x - 48) + 4*x*exp(4*exp(4))*log(x)^4 + exp(4*exp(4))*log(x)*(1024*x - 192)))/x,x)

[Out]

256*exp(4*exp(4) - 4*x) + 96*exp(4*exp(4) - 4*x)*log(x)^2 + 16*exp(4*exp(4) - 4*x)*log(x)^3 + exp(4*exp(4) - 4
*x)*log(x)^4 + 256*exp(4*exp(4) - 4*x)*log(x)