\(\int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+(-12 e^{2 x} x^2+e^{3 x} (-8 x+12 x^2)) \log (x)+(12 e^x x^3+e^{2 x} (6 x^2-12 x^3)) \log ^2(x)+(-4 x^4+4 e^x x^4) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx\) [7971]

   Optimal result
   Rubi [B] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 125, antiderivative size = 25 \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=-\frac {1}{x}+x-\frac {1}{25} x \left (-\frac {e^x}{x}+\log (x)\right )^4 \]

[Out]

x-1/25*x*(ln(x)-exp(x)/x)^4-1/x

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(69\) vs. \(2(25)=50\).

Time = 0.19 (sec) , antiderivative size = 69, normalized size of antiderivative = 2.76, number of steps used = 18, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12, 14, 2228, 2233, 2326, 2333, 2332} \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=-\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}+x-\frac {1}{x}-\frac {1}{25} x \log ^4(x)+\frac {4}{25} e^x \log ^3(x)-\frac {6 e^{2 x} \log ^2(x)}{25 x} \]

[In]

Int[(E^(4*x)*(3 - 4*x) + 4*E^(3*x)*x + 25*x^2 + 25*x^4 + (-12*E^(2*x)*x^2 + E^(3*x)*(-8*x + 12*x^2))*Log[x] +
(12*E^x*x^3 + E^(2*x)*(6*x^2 - 12*x^3))*Log[x]^2 + (-4*x^4 + 4*E^x*x^4)*Log[x]^3 - x^4*Log[x]^4)/(25*x^4),x]

[Out]

-1/25*E^(4*x)/x^3 - x^(-1) + x + (4*E^(3*x)*Log[x])/(25*x^2) - (6*E^(2*x)*Log[x]^2)/(25*x) + (4*E^x*Log[x]^3)/
25 - (x*Log[x]^4)/25

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2228

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[g*u^(m + 1)*(F^(c*v)/(b*c*
e*Log[F])), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rule 2233

Int[Log[(d_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(x_)^(m_.)*((e_) + Log[(d_.)*(x_)]*(h_.)*((f_.) +
(g_.)*(x_))), x_Symbol] :> Simp[e*x^(m + 1)*F^(c*(a + b*x))*(Log[d*x]^(n + 1)/(n + 1)), x] /; FreeQ[{F, a, b,
c, d, e, f, g, h, m, n}, x] && EqQ[e*(m + 1) - f*h*(n + 1), 0] && EqQ[g*h*(n + 1) - b*c*e*Log[F], 0] && NeQ[n,
 -1]

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2333

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{25} \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{x^4} \, dx \\ & = \frac {1}{25} \int \left (-\frac {e^{4 x} (-3+4 x)}{x^4}+\frac {4 e^x \log ^2(x) (3+x \log (x))}{x}-\frac {6 e^{2 x} \log (x) (2-\log (x)+2 x \log (x))}{x^2}+\frac {4 e^{3 x} (1-2 \log (x)+3 x \log (x))}{x^3}+\frac {25+25 x^2-4 x^2 \log ^3(x)-x^2 \log ^4(x)}{x^2}\right ) \, dx \\ & = -\left (\frac {1}{25} \int \frac {e^{4 x} (-3+4 x)}{x^4} \, dx\right )+\frac {1}{25} \int \frac {25+25 x^2-4 x^2 \log ^3(x)-x^2 \log ^4(x)}{x^2} \, dx+\frac {4}{25} \int \frac {e^x \log ^2(x) (3+x \log (x))}{x} \, dx+\frac {4}{25} \int \frac {e^{3 x} (1-2 \log (x)+3 x \log (x))}{x^3} \, dx-\frac {6}{25} \int \frac {e^{2 x} \log (x) (2-\log (x)+2 x \log (x))}{x^2} \, dx \\ & = -\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)+\frac {1}{25} \int \left (\frac {25 \left (1+x^2\right )}{x^2}-4 \log ^3(x)-\log ^4(x)\right ) \, dx \\ & = -\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} \int \log ^4(x) \, dx-\frac {4}{25} \int \log ^3(x) \, dx+\int \frac {1+x^2}{x^2} \, dx \\ & = -\frac {e^{4 x}}{25 x^3}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {4}{25} x \log ^3(x)-\frac {1}{25} x \log ^4(x)+\frac {4}{25} \int \log ^3(x) \, dx+\frac {12}{25} \int \log ^2(x) \, dx+\int \left (1+\frac {1}{x^2}\right ) \, dx \\ & = -\frac {e^{4 x}}{25 x^3}-\frac {1}{x}+x+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {12}{25} x \log ^2(x)+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} x \log ^4(x)-\frac {12}{25} \int \log ^2(x) \, dx-\frac {24}{25} \int \log (x) \, dx \\ & = -\frac {e^{4 x}}{25 x^3}-\frac {1}{x}+\frac {49 x}{25}+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {24}{25} x \log (x)-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} x \log ^4(x)+\frac {24}{25} \int \log (x) \, dx \\ & = -\frac {e^{4 x}}{25 x^3}-\frac {1}{x}+x+\frac {4 e^{3 x} \log (x)}{25 x^2}-\frac {6 e^{2 x} \log ^2(x)}{25 x}+\frac {4}{25} e^x \log ^3(x)-\frac {1}{25} x \log ^4(x) \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(65\) vs. \(2(25)=50\).

Time = 0.09 (sec) , antiderivative size = 65, normalized size of antiderivative = 2.60 \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=\frac {1}{25} \left (-\frac {e^{4 x}}{x^3}-\frac {25}{x}+25 x+\frac {4 e^{3 x} \log (x)}{x^2}-\frac {6 e^{2 x} \log ^2(x)}{x}+4 e^x \log ^3(x)-x \log ^4(x)\right ) \]

[In]

Integrate[(E^(4*x)*(3 - 4*x) + 4*E^(3*x)*x + 25*x^2 + 25*x^4 + (-12*E^(2*x)*x^2 + E^(3*x)*(-8*x + 12*x^2))*Log
[x] + (12*E^x*x^3 + E^(2*x)*(6*x^2 - 12*x^3))*Log[x]^2 + (-4*x^4 + 4*E^x*x^4)*Log[x]^3 - x^4*Log[x]^4)/(25*x^4
),x]

[Out]

(-(E^(4*x)/x^3) - 25/x + 25*x + (4*E^(3*x)*Log[x])/x^2 - (6*E^(2*x)*Log[x]^2)/x + 4*E^x*Log[x]^3 - x*Log[x]^4)
/25

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(55\) vs. \(2(22)=44\).

Time = 0.17 (sec) , antiderivative size = 56, normalized size of antiderivative = 2.24

method result size
default \(\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )^{3}}{25}+\frac {4 \ln \left (x \right ) {\mathrm e}^{3 x}}{25 x^{2}}-\frac {6 \,{\mathrm e}^{2 x} \ln \left (x \right )^{2}}{25 x}-\frac {x \ln \left (x \right )^{4}}{25}+x -\frac {1}{x}-\frac {{\mathrm e}^{4 x}}{25 x^{3}}\) \(56\)
parallelrisch \(-\frac {x^{4} \ln \left (x \right )^{4}-4 \ln \left (x \right )^{3} {\mathrm e}^{x} x^{3}+6 \,{\mathrm e}^{2 x} \ln \left (x \right )^{2} x^{2}-25 x^{4}-4 \ln \left (x \right ) {\mathrm e}^{3 x} x +25 x^{2}+{\mathrm e}^{4 x}}{25 x^{3}}\) \(62\)
risch \(-\frac {x \ln \left (x \right )^{4}}{25}+\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )^{3}}{25}-\frac {6 \,{\mathrm e}^{2 x} \ln \left (x \right )^{2}}{25 x}+\frac {4 \ln \left (x \right ) {\mathrm e}^{3 x}}{25 x^{2}}+\frac {25 x^{4}-{\mathrm e}^{4 x}-25 x^{2}}{25 x^{3}}\) \(63\)

[In]

int(1/25*(-x^4*ln(x)^4+(4*exp(x)*x^4-4*x^4)*ln(x)^3+((-12*x^3+6*x^2)*exp(x)^2+12*exp(x)*x^3)*ln(x)^2+((12*x^2-
8*x)*exp(x)^3-12*exp(x)^2*x^2)*ln(x)+(3-4*x)*exp(x)^4+4*x*exp(x)^3+25*x^4+25*x^2)/x^4,x,method=_RETURNVERBOSE)

[Out]

4/25*exp(x)*ln(x)^3+4/25/x^2*ln(x)*exp(3*x)-6/25*exp(2*x)*ln(x)^2/x-1/25*x*ln(x)^4+x-1/x-1/25/x^3*exp(4*x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 61 vs. \(2 (23) = 46\).

Time = 0.26 (sec) , antiderivative size = 61, normalized size of antiderivative = 2.44 \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=-\frac {x^{4} \log \left (x\right )^{4} - 4 \, x^{3} e^{x} \log \left (x\right )^{3} + 6 \, x^{2} e^{\left (2 \, x\right )} \log \left (x\right )^{2} - 25 \, x^{4} - 4 \, x e^{\left (3 \, x\right )} \log \left (x\right ) + 25 \, x^{2} + e^{\left (4 \, x\right )}}{25 \, x^{3}} \]

[In]

integrate(1/25*(-x^4*log(x)^4+(4*exp(x)*x^4-4*x^4)*log(x)^3+((-12*x^3+6*x^2)*exp(x)^2+12*exp(x)*x^3)*log(x)^2+
((12*x^2-8*x)*exp(x)^3-12*exp(x)^2*x^2)*log(x)+(3-4*x)*exp(x)^4+4*x*exp(x)^3+25*x^4+25*x^2)/x^4,x, algorithm="
fricas")

[Out]

-1/25*(x^4*log(x)^4 - 4*x^3*e^x*log(x)^3 + 6*x^2*e^(2*x)*log(x)^2 - 25*x^4 - 4*x*e^(3*x)*log(x) + 25*x^2 + e^(
4*x))/x^3

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 70 vs. \(2 (17) = 34\).

Time = 0.17 (sec) , antiderivative size = 70, normalized size of antiderivative = 2.80 \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=- \frac {x \log {\left (x \right )}^{4}}{25} + x - \frac {1}{x} + \frac {62500 x^{6} e^{x} \log {\left (x \right )}^{3} - 93750 x^{5} e^{2 x} \log {\left (x \right )}^{2} + 62500 x^{4} e^{3 x} \log {\left (x \right )} - 15625 x^{3} e^{4 x}}{390625 x^{6}} \]

[In]

integrate(1/25*(-x**4*ln(x)**4+(4*exp(x)*x**4-4*x**4)*ln(x)**3+((-12*x**3+6*x**2)*exp(x)**2+12*exp(x)*x**3)*ln
(x)**2+((12*x**2-8*x)*exp(x)**3-12*exp(x)**2*x**2)*ln(x)+(3-4*x)*exp(x)**4+4*x*exp(x)**3+25*x**4+25*x**2)/x**4
,x)

[Out]

-x*log(x)**4/25 + x - 1/x + (62500*x**6*exp(x)*log(x)**3 - 93750*x**5*exp(2*x)*log(x)**2 + 62500*x**4*exp(3*x)
*log(x) - 15625*x**3*exp(4*x))/(390625*x**6)

Maxima [F]

\[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=\int { -\frac {x^{4} \log \left (x\right )^{4} - 25 \, x^{4} - 4 \, {\left (x^{4} e^{x} - x^{4}\right )} \log \left (x\right )^{3} - 6 \, {\left (2 \, x^{3} e^{x} - {\left (2 \, x^{3} - x^{2}\right )} e^{\left (2 \, x\right )}\right )} \log \left (x\right )^{2} - 25 \, x^{2} + {\left (4 \, x - 3\right )} e^{\left (4 \, x\right )} - 4 \, x e^{\left (3 \, x\right )} + 4 \, {\left (3 \, x^{2} e^{\left (2 \, x\right )} - {\left (3 \, x^{2} - 2 \, x\right )} e^{\left (3 \, x\right )}\right )} \log \left (x\right )}{25 \, x^{4}} \,d x } \]

[In]

integrate(1/25*(-x^4*log(x)^4+(4*exp(x)*x^4-4*x^4)*log(x)^3+((-12*x^3+6*x^2)*exp(x)^2+12*exp(x)*x^3)*log(x)^2+
((12*x^2-8*x)*exp(x)^3-12*exp(x)^2*x^2)*log(x)+(3-4*x)*exp(x)^4+4*x*exp(x)^3+25*x^4+25*x^2)/x^4,x, algorithm="
maxima")

[Out]

x - 1/25*(x^3*log(x)^4 - 4*x^2*e^x*log(x)^3 + 6*x*e^(2*x)*log(x)^2 - 4*e^(3*x)*log(x))/x^2 - 1/x - 36/25*gamma
(-2, -3*x) + 64/25*gamma(-2, -4*x) + 192/25*gamma(-3, -4*x) - 4/25*integrate(e^(3*x)/x^3, x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 61 vs. \(2 (23) = 46\).

Time = 0.35 (sec) , antiderivative size = 61, normalized size of antiderivative = 2.44 \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=-\frac {x^{4} \log \left (x\right )^{4} - 4 \, x^{3} e^{x} \log \left (x\right )^{3} + 6 \, x^{2} e^{\left (2 \, x\right )} \log \left (x\right )^{2} - 25 \, x^{4} - 4 \, x e^{\left (3 \, x\right )} \log \left (x\right ) + 25 \, x^{2} + e^{\left (4 \, x\right )}}{25 \, x^{3}} \]

[In]

integrate(1/25*(-x^4*log(x)^4+(4*exp(x)*x^4-4*x^4)*log(x)^3+((-12*x^3+6*x^2)*exp(x)^2+12*exp(x)*x^3)*log(x)^2+
((12*x^2-8*x)*exp(x)^3-12*exp(x)^2*x^2)*log(x)+(3-4*x)*exp(x)^4+4*x*exp(x)^3+25*x^4+25*x^2)/x^4,x, algorithm="
giac")

[Out]

-1/25*(x^4*log(x)^4 - 4*x^3*e^x*log(x)^3 + 6*x^2*e^(2*x)*log(x)^2 - 25*x^4 - 4*x*e^(3*x)*log(x) + 25*x^2 + e^(
4*x))/x^3

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{4 x} (3-4 x)+4 e^{3 x} x+25 x^2+25 x^4+\left (-12 e^{2 x} x^2+e^{3 x} \left (-8 x+12 x^2\right )\right ) \log (x)+\left (12 e^x x^3+e^{2 x} \left (6 x^2-12 x^3\right )\right ) \log ^2(x)+\left (-4 x^4+4 e^x x^4\right ) \log ^3(x)-x^4 \log ^4(x)}{25 x^4} \, dx=-\int -\frac {\frac {4\,x\,{\mathrm {e}}^{3\,x}}{25}-\frac {\ln \left (x\right )\,\left ({\mathrm {e}}^{3\,x}\,\left (8\,x-12\,x^2\right )+12\,x^2\,{\mathrm {e}}^{2\,x}\right )}{25}+\frac {{\ln \left (x\right )}^3\,\left (4\,x^4\,{\mathrm {e}}^x-4\,x^4\right )}{25}-\frac {x^4\,{\ln \left (x\right )}^4}{25}+\frac {{\ln \left (x\right )}^2\,\left (12\,x^3\,{\mathrm {e}}^x+{\mathrm {e}}^{2\,x}\,\left (6\,x^2-12\,x^3\right )\right )}{25}-\frac {{\mathrm {e}}^{4\,x}\,\left (4\,x-3\right )}{25}+x^2+x^4}{x^4} \,d x \]

[In]

int(((4*x*exp(3*x))/25 - (log(x)*(exp(3*x)*(8*x - 12*x^2) + 12*x^2*exp(2*x)))/25 + (log(x)^3*(4*x^4*exp(x) - 4
*x^4))/25 - (x^4*log(x)^4)/25 + (log(x)^2*(12*x^3*exp(x) + exp(2*x)*(6*x^2 - 12*x^3)))/25 - (exp(4*x)*(4*x - 3
))/25 + x^2 + x^4)/x^4,x)

[Out]

-int(-((4*x*exp(3*x))/25 - (log(x)*(exp(3*x)*(8*x - 12*x^2) + 12*x^2*exp(2*x)))/25 + (log(x)^3*(4*x^4*exp(x) -
 4*x^4))/25 - (x^4*log(x)^4)/25 + (log(x)^2*(12*x^3*exp(x) + exp(2*x)*(6*x^2 - 12*x^3)))/25 - (exp(4*x)*(4*x -
 3))/25 + x^2 + x^4)/x^4, x)