\(\int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx\) [8290]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 19 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=3+e^{\frac {15 \left (\frac {e}{25}+x\right )}{x}}-x \]

[Out]

exp(15/x*(1/25*exp(1)+x))-x+3

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.84, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 14, 2240} \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=e^{\frac {3 e}{5 x}+15}-x \]

[In]

Int[(-3*E^(1 + (3*E + 75*x)/(5*x)) - 5*x^2)/(5*x^2),x]

[Out]

E^(15 + (3*E)/(5*x)) - x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2240

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^n*(
F^(a + b*(c + d*x)^n)/(b*f*n*(c + d*x)^n*Log[F])), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{5} \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{x^2} \, dx \\ & = \frac {1}{5} \int \left (-5-\frac {3 e^{16+\frac {3 e}{5 x}}}{x^2}\right ) \, dx \\ & = -x-\frac {3}{5} \int \frac {e^{16+\frac {3 e}{5 x}}}{x^2} \, dx \\ & = e^{15+\frac {3 e}{5 x}}-x \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.84 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=e^{15+\frac {3 e}{5 x}}-x \]

[In]

Integrate[(-3*E^(1 + (3*E + 75*x)/(5*x)) - 5*x^2)/(5*x^2),x]

[Out]

E^(15 + (3*E)/(5*x)) - x

Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.79

method result size
derivativedivides \(-x +{\mathrm e}^{15+\frac {3 \,{\mathrm e}}{5 x}}\) \(15\)
default \(-x +{\mathrm e}^{15+\frac {3 \,{\mathrm e}}{5 x}}\) \(15\)
risch \(-x +{\mathrm e}^{\frac {\frac {3 \,{\mathrm e}}{5}+15 x}{x}}\) \(17\)
parallelrisch \(-x +{\mathrm e}^{\frac {\frac {3 \,{\mathrm e}}{5}+15 x}{x}}\) \(17\)
parts \(-x +{\mathrm e}^{\frac {3 \,{\mathrm e}+75 x}{5 x}}\) \(19\)

[In]

int(1/5*(-3*exp(1)*exp(1/5*(3*exp(1)+75*x)/x)-5*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-x+exp(15+3/5*exp(1)/x)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.32 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=-{\left (x e - e^{\left (\frac {80 \, x + 3 \, e}{5 \, x}\right )}\right )} e^{\left (-1\right )} \]

[In]

integrate(1/5*(-3*exp(1)*exp(1/5*(3*exp(1)+75*x)/x)-5*x^2)/x^2,x, algorithm="fricas")

[Out]

-(x*e - e^(1/5*(80*x + 3*e)/x))*e^(-1)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.74 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=- x + e^{\frac {15 x + \frac {3 e}{5}}{x}} \]

[In]

integrate(1/5*(-3*exp(1)*exp(1/5*(3*exp(1)+75*x)/x)-5*x**2)/x**2,x)

[Out]

-x + exp((15*x + 3*E/5)/x)

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.74 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=-x + e^{\left (\frac {3 \, e}{5 \, x} + 15\right )} \]

[In]

integrate(1/5*(-3*exp(1)*exp(1/5*(3*exp(1)+75*x)/x)-5*x^2)/x^2,x, algorithm="maxima")

[Out]

-x + e^(3/5*e/x + 15)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 66 vs. \(2 (17) = 34\).

Time = 0.32 (sec) , antiderivative size = 66, normalized size of antiderivative = 3.47 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx=\frac {{\left (\frac {{\left (80 \, x + 3 \, e\right )} e^{\left (\frac {80 \, x + 3 \, e}{5 \, x}\right )}}{x} - 3 \, e^{2} - 80 \, e^{\left (\frac {80 \, x + 3 \, e}{5 \, x}\right )}\right )} e^{\left (-1\right )}}{\frac {80 \, x + 3 \, e}{x} - 80} \]

[In]

integrate(1/5*(-3*exp(1)*exp(1/5*(3*exp(1)+75*x)/x)-5*x^2)/x^2,x, algorithm="giac")

[Out]

((80*x + 3*e)*e^(1/5*(80*x + 3*e)/x)/x - 3*e^2 - 80*e^(1/5*(80*x + 3*e)/x))*e^(-1)/((80*x + 3*e)/x - 80)

Mupad [B] (verification not implemented)

Time = 14.10 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.74 \[ \int \frac {-3 e^{1+\frac {3 e+75 x}{5 x}}-5 x^2}{5 x^2} \, dx={\mathrm {e}}^{\frac {3\,\mathrm {e}}{5\,x}+15}-x \]

[In]

int(-((3*exp(1)*exp((15*x + (3*exp(1))/5)/x))/5 + x^2)/x^2,x)

[Out]

exp((3*exp(1))/(5*x) + 15) - x