\(\int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} (4000+25600 x-1920 x^2)} \, dx\) [8296]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 71, antiderivative size = 35 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=\frac {4}{\frac {5}{4}+x+4 \left (e^{e^{x^2}}+x-\frac {3}{4} \left (-x+\frac {x^2}{5}\right )\right )} \]

[Out]

4/(5/4+8*x-3/5*x^2+4*exp(exp(x^2)))

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.66, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6820, 12, 6818} \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=\frac {80}{-12 x^2+80 e^{e^{x^2}}+160 x+25} \]

[In]

Int[(-12800 + 1920*x - 12800*E^(E^x^2 + x^2)*x)/(625 + 6400*E^(2*E^x^2) + 8000*x + 25000*x^2 - 3840*x^3 + 144*
x^4 + E^E^x^2*(4000 + 25600*x - 1920*x^2)),x]

[Out]

80/(25 + 80*E^E^x^2 + 160*x - 12*x^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6818

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*(y^(m + 1)/(m + 1)), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {640 \left (-20-\left (-3+20 e^{e^{x^2}+x^2}\right ) x\right )}{\left (25+80 e^{e^{x^2}}+160 x-12 x^2\right )^2} \, dx \\ & = 640 \int \frac {-20-\left (-3+20 e^{e^{x^2}+x^2}\right ) x}{\left (25+80 e^{e^{x^2}}+160 x-12 x^2\right )^2} \, dx \\ & = \frac {80}{25+80 e^{e^{x^2}}+160 x-12 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.66 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=\frac {80}{25+80 e^{e^{x^2}}+160 x-12 x^2} \]

[In]

Integrate[(-12800 + 1920*x - 12800*E^(E^x^2 + x^2)*x)/(625 + 6400*E^(2*E^x^2) + 8000*x + 25000*x^2 - 3840*x^3
+ 144*x^4 + E^E^x^2*(4000 + 25600*x - 1920*x^2)),x]

[Out]

80/(25 + 80*E^E^x^2 + 160*x - 12*x^2)

Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.63

method result size
norman \(-\frac {80}{12 x^{2}-160 x -80 \,{\mathrm e}^{{\mathrm e}^{x^{2}}}-25}\) \(22\)
risch \(-\frac {80}{12 x^{2}-160 x -80 \,{\mathrm e}^{{\mathrm e}^{x^{2}}}-25}\) \(22\)
parallelrisch \(-\frac {80}{12 x^{2}-160 x -80 \,{\mathrm e}^{{\mathrm e}^{x^{2}}}-25}\) \(22\)

[In]

int((-12800*x*exp(x^2)*exp(exp(x^2))+1920*x-12800)/(6400*exp(exp(x^2))^2+(-1920*x^2+25600*x+4000)*exp(exp(x^2)
)+144*x^4-3840*x^3+25000*x^2+8000*x+625),x,method=_RETURNVERBOSE)

[Out]

-80/(12*x^2-160*x-80*exp(exp(x^2))-25)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=-\frac {80 \, e^{\left (x^{2}\right )}}{{\left (12 \, x^{2} - 160 \, x - 25\right )} e^{\left (x^{2}\right )} - 80 \, e^{\left (x^{2} + e^{\left (x^{2}\right )}\right )}} \]

[In]

integrate((-12800*x*exp(x^2)*exp(exp(x^2))+1920*x-12800)/(6400*exp(exp(x^2))^2+(-1920*x^2+25600*x+4000)*exp(ex
p(x^2))+144*x^4-3840*x^3+25000*x^2+8000*x+625),x, algorithm="fricas")

[Out]

-80*e^(x^2)/((12*x^2 - 160*x - 25)*e^(x^2) - 80*e^(x^2 + e^(x^2)))

Sympy [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.57 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=\frac {1}{- \frac {3 x^{2}}{20} + 2 x + e^{e^{x^{2}}} + \frac {5}{16}} \]

[In]

integrate((-12800*x*exp(x**2)*exp(exp(x**2))+1920*x-12800)/(6400*exp(exp(x**2))**2+(-1920*x**2+25600*x+4000)*e
xp(exp(x**2))+144*x**4-3840*x**3+25000*x**2+8000*x+625),x)

[Out]

1/(-3*x**2/20 + 2*x + exp(exp(x**2)) + 5/16)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.60 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=-\frac {80}{12 \, x^{2} - 160 \, x - 80 \, e^{\left (e^{\left (x^{2}\right )}\right )} - 25} \]

[In]

integrate((-12800*x*exp(x^2)*exp(exp(x^2))+1920*x-12800)/(6400*exp(exp(x^2))^2+(-1920*x^2+25600*x+4000)*exp(ex
p(x^2))+144*x^4-3840*x^3+25000*x^2+8000*x+625),x, algorithm="maxima")

[Out]

-80/(12*x^2 - 160*x - 80*e^(e^(x^2)) - 25)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.60 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=-\frac {80}{12 \, x^{2} - 160 \, x - 80 \, e^{\left (e^{\left (x^{2}\right )}\right )} - 25} \]

[In]

integrate((-12800*x*exp(x^2)*exp(exp(x^2))+1920*x-12800)/(6400*exp(exp(x^2))^2+(-1920*x^2+25600*x+4000)*exp(ex
p(x^2))+144*x^4-3840*x^3+25000*x^2+8000*x+625),x, algorithm="giac")

[Out]

-80/(12*x^2 - 160*x - 80*e^(e^(x^2)) - 25)

Mupad [B] (verification not implemented)

Time = 13.48 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.60 \[ \int \frac {-12800+1920 x-12800 e^{e^{x^2}+x^2} x}{625+6400 e^{2 e^{x^2}}+8000 x+25000 x^2-3840 x^3+144 x^4+e^{e^{x^2}} \left (4000+25600 x-1920 x^2\right )} \, dx=\frac {80}{160\,x+80\,{\mathrm {e}}^{{\mathrm {e}}^{x^2}}-12\,x^2+25} \]

[In]

int(-(12800*x*exp(x^2)*exp(exp(x^2)) - 1920*x + 12800)/(8000*x + 6400*exp(2*exp(x^2)) + exp(exp(x^2))*(25600*x
 - 1920*x^2 + 4000) + 25000*x^2 - 3840*x^3 + 144*x^4 + 625),x)

[Out]

80/(160*x + 80*exp(exp(x^2)) - 12*x^2 + 25)