\(\int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} (-52 x-4 x^2-12 x^3)}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} (-52 x^2-2 x^3-4 x^4)+x \log (x)} \, dx\) [8689]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 122, antiderivative size = 22 \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log \left (-x \left (26+e^{e^2}+x+2 x^2\right )^2+\log (x)\right ) \]

[Out]

ln(ln(x)-x*(2*x^2+26+x+exp(exp(2)))^2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6, 6820, 6816} \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log \left (x \left (2 x^2+x+e^{e^2}+26\right )^2-\log (x)\right ) \]

[In]

Int[(1 - 676*x - E^(2*E^2)*x - 104*x^2 - 315*x^3 - 16*x^4 - 20*x^5 + E^E^2*(-52*x - 4*x^2 - 12*x^3))/(-676*x^2
 - E^(2*E^2)*x^2 - 52*x^3 - 105*x^4 - 4*x^5 - 4*x^6 + E^E^2*(-52*x^2 - 2*x^3 - 4*x^4) + x*Log[x]),x]

[Out]

Log[x*(26 + E^E^2 + x + 2*x^2)^2 - Log[x]]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 6816

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1+\left (-676-e^{2 e^2}\right ) x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx \\ & = \int \frac {1+\left (-676-e^{2 e^2}\right ) x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{\left (-676-e^{2 e^2}\right ) x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx \\ & = \int \frac {-1+\left (26+e^{e^2}\right )^2 x+4 \left (26+e^{e^2}\right ) x^2+3 \left (105+4 e^{e^2}\right ) x^3+16 x^4+20 x^5}{x \left (x \left (26+e^{e^2}+x+2 x^2\right )^2-\log (x)\right )} \, dx \\ & = \log \left (x \left (26+e^{e^2}+x+2 x^2\right )^2-\log (x)\right ) \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(66\) vs. \(2(22)=44\).

Time = 0.55 (sec) , antiderivative size = 66, normalized size of antiderivative = 3.00 \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log \left (676 x+52 e^{e^2} x+e^{2 e^2} x+52 x^2+2 e^{e^2} x^2+105 x^3+4 e^{e^2} x^3+4 x^4+4 x^5-\log (x)\right ) \]

[In]

Integrate[(1 - 676*x - E^(2*E^2)*x - 104*x^2 - 315*x^3 - 16*x^4 - 20*x^5 + E^E^2*(-52*x - 4*x^2 - 12*x^3))/(-6
76*x^2 - E^(2*E^2)*x^2 - 52*x^3 - 105*x^4 - 4*x^5 - 4*x^6 + E^E^2*(-52*x^2 - 2*x^3 - 4*x^4) + x*Log[x]),x]

[Out]

Log[676*x + 52*E^E^2*x + E^(2*E^2)*x + 52*x^2 + 2*E^E^2*x^2 + 105*x^3 + 4*E^E^2*x^3 + 4*x^4 + 4*x^5 - Log[x]]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(54\) vs. \(2(20)=40\).

Time = 0.83 (sec) , antiderivative size = 55, normalized size of antiderivative = 2.50

method result size
parallelrisch \(\ln \left (x^{5}+x^{3} {\mathrm e}^{{\mathrm e}^{2}}+x^{4}+\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{2}}}{4}+\frac {x^{2} {\mathrm e}^{{\mathrm e}^{2}}}{2}+\frac {105 x^{3}}{4}+13 x \,{\mathrm e}^{{\mathrm e}^{2}}+13 x^{2}+169 x -\frac {\ln \left (x \right )}{4}\right )\) \(55\)
risch \(\ln \left (-4 x^{5}-4 x^{3} {\mathrm e}^{{\mathrm e}^{2}}-4 x^{4}-x \,{\mathrm e}^{2 \,{\mathrm e}^{2}}-2 x^{2} {\mathrm e}^{{\mathrm e}^{2}}-105 x^{3}-52 x \,{\mathrm e}^{{\mathrm e}^{2}}-52 x^{2}+\ln \left (x \right )-676 x \right )\) \(58\)
default \(\ln \left (4 x^{5}+4 x^{4}+4 x^{3} {\mathrm e}^{{\mathrm e}^{2}}+105 x^{3}+2 x^{2} {\mathrm e}^{{\mathrm e}^{2}}+x \,{\mathrm e}^{2 \,{\mathrm e}^{2}}+52 x^{2}+52 x \,{\mathrm e}^{{\mathrm e}^{2}}+676 x -\ln \left (x \right )\right )\) \(59\)
norman \(\ln \left (4 x^{5}+4 x^{4}+4 x^{3} {\mathrm e}^{{\mathrm e}^{2}}+105 x^{3}+2 x^{2} {\mathrm e}^{{\mathrm e}^{2}}+x \,{\mathrm e}^{2 \,{\mathrm e}^{2}}+52 x^{2}+52 x \,{\mathrm e}^{{\mathrm e}^{2}}+676 x -\ln \left (x \right )\right )\) \(59\)

[In]

int((-x*exp(exp(2))^2+(-12*x^3-4*x^2-52*x)*exp(exp(2))-20*x^5-16*x^4-315*x^3-104*x^2-676*x+1)/(x*ln(x)-x^2*exp
(exp(2))^2+(-4*x^4-2*x^3-52*x^2)*exp(exp(2))-4*x^6-4*x^5-105*x^4-52*x^3-676*x^2),x,method=_RETURNVERBOSE)

[Out]

ln(x^5+x^3*exp(exp(2))+x^4+1/4*x*exp(exp(2))^2+1/2*x^2*exp(exp(2))+105/4*x^3+13*x*exp(exp(2))+13*x^2+169*x-1/4
*ln(x))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 52 vs. \(2 (20) = 40\).

Time = 0.26 (sec) , antiderivative size = 52, normalized size of antiderivative = 2.36 \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log \left (-4 \, x^{5} - 4 \, x^{4} - 105 \, x^{3} - 52 \, x^{2} - x e^{\left (2 \, e^{2}\right )} - 2 \, {\left (2 \, x^{3} + x^{2} + 26 \, x\right )} e^{\left (e^{2}\right )} - 676 \, x + \log \left (x\right )\right ) \]

[In]

integrate((-x*exp(exp(2))^2+(-12*x^3-4*x^2-52*x)*exp(exp(2))-20*x^5-16*x^4-315*x^3-104*x^2-676*x+1)/(x*log(x)-
x^2*exp(exp(2))^2+(-4*x^4-2*x^3-52*x^2)*exp(exp(2))-4*x^6-4*x^5-105*x^4-52*x^3-676*x^2),x, algorithm="fricas")

[Out]

log(-4*x^5 - 4*x^4 - 105*x^3 - 52*x^2 - x*e^(2*e^2) - 2*(2*x^3 + x^2 + 26*x)*e^(e^2) - 676*x + log(x))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 65 vs. \(2 (20) = 40\).

Time = 0.15 (sec) , antiderivative size = 65, normalized size of antiderivative = 2.95 \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log {\left (- 4 x^{5} - 4 x^{4} - 4 x^{3} e^{e^{2}} - 105 x^{3} - 2 x^{2} e^{e^{2}} - 52 x^{2} - x e^{2 e^{2}} - 52 x e^{e^{2}} - 676 x + \log {\left (x \right )} \right )} \]

[In]

integrate((-x*exp(exp(2))**2+(-12*x**3-4*x**2-52*x)*exp(exp(2))-20*x**5-16*x**4-315*x**3-104*x**2-676*x+1)/(x*
ln(x)-x**2*exp(exp(2))**2+(-4*x**4-2*x**3-52*x**2)*exp(exp(2))-4*x**6-4*x**5-105*x**4-52*x**3-676*x**2),x)

[Out]

log(-4*x**5 - 4*x**4 - 4*x**3*exp(exp(2)) - 105*x**3 - 2*x**2*exp(exp(2)) - 52*x**2 - x*exp(2*exp(2)) - 52*x*e
xp(exp(2)) - 676*x + log(x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 51 vs. \(2 (20) = 40\).

Time = 0.25 (sec) , antiderivative size = 51, normalized size of antiderivative = 2.32 \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log \left (-4 \, x^{5} - 4 \, x^{4} - x^{3} {\left (4 \, e^{\left (e^{2}\right )} + 105\right )} - 2 \, x^{2} {\left (e^{\left (e^{2}\right )} + 26\right )} - x {\left (e^{\left (2 \, e^{2}\right )} + 52 \, e^{\left (e^{2}\right )} + 676\right )} + \log \left (x\right )\right ) \]

[In]

integrate((-x*exp(exp(2))^2+(-12*x^3-4*x^2-52*x)*exp(exp(2))-20*x^5-16*x^4-315*x^3-104*x^2-676*x+1)/(x*log(x)-
x^2*exp(exp(2))^2+(-4*x^4-2*x^3-52*x^2)*exp(exp(2))-4*x^6-4*x^5-105*x^4-52*x^3-676*x^2),x, algorithm="maxima")

[Out]

log(-4*x^5 - 4*x^4 - x^3*(4*e^(e^2) + 105) - 2*x^2*(e^(e^2) + 26) - x*(e^(2*e^2) + 52*e^(e^2) + 676) + log(x))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 57 vs. \(2 (20) = 40\).

Time = 0.27 (sec) , antiderivative size = 57, normalized size of antiderivative = 2.59 \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\log \left (-4 \, x^{5} - 4 \, x^{4} - 4 \, x^{3} e^{\left (e^{2}\right )} - 105 \, x^{3} - 2 \, x^{2} e^{\left (e^{2}\right )} - 52 \, x^{2} - x e^{\left (2 \, e^{2}\right )} - 52 \, x e^{\left (e^{2}\right )} - 676 \, x + \log \left (x\right )\right ) \]

[In]

integrate((-x*exp(exp(2))^2+(-12*x^3-4*x^2-52*x)*exp(exp(2))-20*x^5-16*x^4-315*x^3-104*x^2-676*x+1)/(x*log(x)-
x^2*exp(exp(2))^2+(-4*x^4-2*x^3-52*x^2)*exp(exp(2))-4*x^6-4*x^5-105*x^4-52*x^3-676*x^2),x, algorithm="giac")

[Out]

log(-4*x^5 - 4*x^4 - 4*x^3*e^(e^2) - 105*x^3 - 2*x^2*e^(e^2) - 52*x^2 - x*e^(2*e^2) - 52*x*e^(e^2) - 676*x + l
og(x))

Mupad [F(-1)]

Timed out. \[ \int \frac {1-676 x-e^{2 e^2} x-104 x^2-315 x^3-16 x^4-20 x^5+e^{e^2} \left (-52 x-4 x^2-12 x^3\right )}{-676 x^2-e^{2 e^2} x^2-52 x^3-105 x^4-4 x^5-4 x^6+e^{e^2} \left (-52 x^2-2 x^3-4 x^4\right )+x \log (x)} \, dx=\int \frac {676\,x+x\,{\mathrm {e}}^{2\,{\mathrm {e}}^2}+{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (12\,x^3+4\,x^2+52\,x\right )+104\,x^2+315\,x^3+16\,x^4+20\,x^5-1}{{\mathrm {e}}^{{\mathrm {e}}^2}\,\left (4\,x^4+2\,x^3+52\,x^2\right )+x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^2}-x\,\ln \left (x\right )+676\,x^2+52\,x^3+105\,x^4+4\,x^5+4\,x^6} \,d x \]

[In]

int((676*x + x*exp(2*exp(2)) + exp(exp(2))*(52*x + 4*x^2 + 12*x^3) + 104*x^2 + 315*x^3 + 16*x^4 + 20*x^5 - 1)/
(exp(exp(2))*(52*x^2 + 2*x^3 + 4*x^4) + x^2*exp(2*exp(2)) - x*log(x) + 676*x^2 + 52*x^3 + 105*x^4 + 4*x^5 + 4*
x^6),x)

[Out]

int((676*x + x*exp(2*exp(2)) + exp(exp(2))*(52*x + 4*x^2 + 12*x^3) + 104*x^2 + 315*x^3 + 16*x^4 + 20*x^5 - 1)/
(exp(exp(2))*(52*x^2 + 2*x^3 + 4*x^4) + x^2*exp(2*exp(2)) - x*log(x) + 676*x^2 + 52*x^3 + 105*x^4 + 4*x^5 + 4*
x^6), x)