\(\int \frac {40-95 x+30 x^2+e^x (16-38 x+12 x^2)+(15-15 x+15 x^2+e^x (-10+16 x-16 x^2+6 x^3)) \log (-1+x-x^2)}{1-x+x^2} \, dx\) [8703]

   Optimal result
   Rubi [B] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 74, antiderivative size = 22 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=\left (5+2 e^x\right ) (-8+3 x) \log \left (-1+x-x^2\right ) \]

[Out]

(3*x-8)*ln(-x^2+x-1)*(5+2*exp(x))

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(57\) vs. \(2(22)=44\).

Time = 0.65 (sec) , antiderivative size = 57, normalized size of antiderivative = 2.59, number of steps used = 31, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {6820, 6860, 787, 648, 632, 210, 642, 2225, 2209, 2207, 2634} \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=-6 e^x \log \left (-x^2+x-1\right )-2 e^x (5-3 x) \log \left (-x^2+x-1\right )+15 x \log \left (-x^2+x-1\right )-40 \log \left (x^2-x+1\right ) \]

[In]

Int[(40 - 95*x + 30*x^2 + E^x*(16 - 38*x + 12*x^2) + (15 - 15*x + 15*x^2 + E^x*(-10 + 16*x - 16*x^2 + 6*x^3))*
Log[-1 + x - x^2])/(1 - x + x^2),x]

[Out]

-6*E^x*Log[-1 + x - x^2] - 2*E^x*(5 - 3*x)*Log[-1 + x - x^2] + 15*x*Log[-1 + x - x^2] - 40*Log[1 - x + x^2]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 787

Int[(((d_.) + (e_.)*(x_))*((f_) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*g*(x/c
), x] + Dist[1/c, Int[(c*d*f - a*e*g + (c*e*f + c*d*g - b*e*g)*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c,
 d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2634

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*(D[u, x]
/u), x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6820

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {\left (5+2 e^x\right ) \left (8-19 x+6 x^2\right )}{1-x+x^2}+\left (15+2 e^x (-5+3 x)\right ) \log \left (-1+x-x^2\right )\right ) \, dx \\ & = \int \frac {\left (5+2 e^x\right ) \left (8-19 x+6 x^2\right )}{1-x+x^2} \, dx+\int \left (15+2 e^x (-5+3 x)\right ) \log \left (-1+x-x^2\right ) \, dx \\ & = -6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )-\int \frac {(1-2 x) \left (-15 x-2 e^x (-8+3 x)\right )}{1-x+x^2} \, dx+\int \left (\frac {5 (-1+2 x) (-8+3 x)}{1-x+x^2}+\frac {2 e^x (-1+2 x) (-8+3 x)}{1-x+x^2}\right ) \, dx \\ & = -6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )+2 \int \frac {e^x (-1+2 x) (-8+3 x)}{1-x+x^2} \, dx+5 \int \frac {(-1+2 x) (-8+3 x)}{1-x+x^2} \, dx-\int \left (\frac {15 x (-1+2 x)}{1-x+x^2}+\frac {2 e^x (-1+2 x) (-8+3 x)}{1-x+x^2}\right ) \, dx \\ & = 30 x-6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )-2 \int \frac {e^x (-1+2 x) (-8+3 x)}{1-x+x^2} \, dx+2 \int \left (6 e^x+\frac {e^x (2-13 x)}{1-x+x^2}\right ) \, dx+5 \int \frac {2-13 x}{1-x+x^2} \, dx-15 \int \frac {x (-1+2 x)}{1-x+x^2} \, dx \\ & = -6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )+2 \int \frac {e^x (2-13 x)}{1-x+x^2} \, dx-2 \int \left (6 e^x+\frac {e^x (2-13 x)}{1-x+x^2}\right ) \, dx+12 \int e^x \, dx-15 \int \frac {-2+x}{1-x+x^2} \, dx-\frac {45}{2} \int \frac {1}{1-x+x^2} \, dx-\frac {65}{2} \int \frac {-1+2 x}{1-x+x^2} \, dx \\ & = 12 e^x-6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )-\frac {65}{2} \log \left (1-x+x^2\right )-2 \int \frac {e^x (2-13 x)}{1-x+x^2} \, dx+2 \int \left (\frac {\left (-13+3 i \sqrt {3}\right ) e^x}{-1-i \sqrt {3}+2 x}+\frac {\left (-13-3 i \sqrt {3}\right ) e^x}{-1+i \sqrt {3}+2 x}\right ) \, dx-\frac {15}{2} \int \frac {-1+2 x}{1-x+x^2} \, dx-12 \int e^x \, dx+\frac {45}{2} \int \frac {1}{1-x+x^2} \, dx+45 \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right ) \\ & = 15 \sqrt {3} \arctan \left (\frac {1-2 x}{\sqrt {3}}\right )-6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )-40 \log \left (1-x+x^2\right )-2 \int \left (\frac {\left (-13+3 i \sqrt {3}\right ) e^x}{-1-i \sqrt {3}+2 x}+\frac {\left (-13-3 i \sqrt {3}\right ) e^x}{-1+i \sqrt {3}+2 x}\right ) \, dx-45 \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )-\left (2 \left (13-3 i \sqrt {3}\right )\right ) \int \frac {e^x}{-1-i \sqrt {3}+2 x} \, dx-\left (2 \left (13+3 i \sqrt {3}\right )\right ) \int \frac {e^x}{-1+i \sqrt {3}+2 x} \, dx \\ & = -\left (\left (13-3 i \sqrt {3}\right ) e^{\frac {1}{2}+\frac {i \sqrt {3}}{2}} \operatorname {ExpIntegralEi}\left (\frac {1}{2} \left (-1-i \sqrt {3}+2 x\right )\right )\right )-\left (13+3 i \sqrt {3}\right ) e^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \operatorname {ExpIntegralEi}\left (\frac {1}{2} \left (-1+i \sqrt {3}+2 x\right )\right )-6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )-40 \log \left (1-x+x^2\right )+\left (2 \left (13-3 i \sqrt {3}\right )\right ) \int \frac {e^x}{-1-i \sqrt {3}+2 x} \, dx+\left (2 \left (13+3 i \sqrt {3}\right )\right ) \int \frac {e^x}{-1+i \sqrt {3}+2 x} \, dx \\ & = -6 e^x \log \left (-1+x-x^2\right )-2 e^x (5-3 x) \log \left (-1+x-x^2\right )+15 x \log \left (-1+x-x^2\right )-40 \log \left (1-x+x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.89 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.68 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=\left (-16 e^x+15 x+6 e^x x\right ) \log \left (-1+x-x^2\right )-40 \log \left (1-x+x^2\right ) \]

[In]

Integrate[(40 - 95*x + 30*x^2 + E^x*(16 - 38*x + 12*x^2) + (15 - 15*x + 15*x^2 + E^x*(-10 + 16*x - 16*x^2 + 6*
x^3))*Log[-1 + x - x^2])/(1 - x + x^2),x]

[Out]

(-16*E^x + 15*x + 6*E^x*x)*Log[-1 + x - x^2] - 40*Log[1 - x + x^2]

Maple [A] (verified)

Time = 2.47 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.64

method result size
risch \(\left (6 \,{\mathrm e}^{x} x +15 x -16 \,{\mathrm e}^{x}\right ) \ln \left (-x^{2}+x -1\right )-40 \ln \left (x^{2}-x +1\right )\) \(36\)
default \(-16 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right )+6 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right ) x -40 \ln \left (x^{2}-x +1\right )+15 \ln \left (-x^{2}+x -1\right ) x\) \(52\)
norman \(-40 \ln \left (-x^{2}+x -1\right )-16 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right )+15 \ln \left (-x^{2}+x -1\right ) x +6 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right ) x\) \(52\)
parallelrisch \(-40 \ln \left (-x^{2}+x -1\right )-16 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right )+15 \ln \left (-x^{2}+x -1\right ) x +6 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right ) x\) \(52\)
parts \(-16 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right )+6 \,{\mathrm e}^{x} \ln \left (-x^{2}+x -1\right ) x -40 \ln \left (x^{2}-x +1\right )+15 \ln \left (-x^{2}+x -1\right ) x\) \(52\)

[In]

int((((6*x^3-16*x^2+16*x-10)*exp(x)+15*x^2-15*x+15)*ln(-x^2+x-1)+(12*x^2-38*x+16)*exp(x)+30*x^2-95*x+40)/(x^2-
x+1),x,method=_RETURNVERBOSE)

[Out]

(6*exp(x)*x+15*x-16*exp(x))*ln(-x^2+x-1)-40*ln(x^2-x+1)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.09 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx={\left (2 \, {\left (3 \, x - 8\right )} e^{x} + 15 \, x - 40\right )} \log \left (-x^{2} + x - 1\right ) \]

[In]

integrate((((6*x^3-16*x^2+16*x-10)*exp(x)+15*x^2-15*x+15)*log(-x^2+x-1)+(12*x^2-38*x+16)*exp(x)+30*x^2-95*x+40
)/(x^2-x+1),x, algorithm="fricas")

[Out]

(2*(3*x - 8)*e^x + 15*x - 40)*log(-x^2 + x - 1)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 46 vs. \(2 (19) = 38\).

Time = 0.21 (sec) , antiderivative size = 46, normalized size of antiderivative = 2.09 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=15 x \log {\left (- x^{2} + x - 1 \right )} + \left (6 x \log {\left (- x^{2} + x - 1 \right )} - 16 \log {\left (- x^{2} + x - 1 \right )}\right ) e^{x} - 40 \log {\left (x^{2} - x + 1 \right )} \]

[In]

integrate((((6*x**3-16*x**2+16*x-10)*exp(x)+15*x**2-15*x+15)*ln(-x**2+x-1)+(12*x**2-38*x+16)*exp(x)+30*x**2-95
*x+40)/(x**2-x+1),x)

[Out]

15*x*log(-x**2 + x - 1) + (6*x*log(-x**2 + x - 1) - 16*log(-x**2 + x - 1))*exp(x) - 40*log(x**2 - x + 1)

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.68 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=\frac {1}{2} \, {\left (4 \, {\left (3 \, x - 8\right )} e^{x} + 30 \, x - 15\right )} \log \left (-x^{2} + x - 1\right ) - \frac {65}{2} \, \log \left (x^{2} - x + 1\right ) \]

[In]

integrate((((6*x^3-16*x^2+16*x-10)*exp(x)+15*x^2-15*x+15)*log(-x^2+x-1)+(12*x^2-38*x+16)*exp(x)+30*x^2-95*x+40
)/(x^2-x+1),x, algorithm="maxima")

[Out]

1/2*(4*(3*x - 8)*e^x + 30*x - 15)*log(-x^2 + x - 1) - 65/2*log(x^2 - x + 1)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 51 vs. \(2 (21) = 42\).

Time = 0.28 (sec) , antiderivative size = 51, normalized size of antiderivative = 2.32 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=6 \, x e^{x} \log \left (-x^{2} + x - 1\right ) + 15 \, x \log \left (-x^{2} + x - 1\right ) - 16 \, e^{x} \log \left (-x^{2} + x - 1\right ) - 40 \, \log \left (x^{2} - x + 1\right ) \]

[In]

integrate((((6*x^3-16*x^2+16*x-10)*exp(x)+15*x^2-15*x+15)*log(-x^2+x-1)+(12*x^2-38*x+16)*exp(x)+30*x^2-95*x+40
)/(x^2-x+1),x, algorithm="giac")

[Out]

6*x*e^x*log(-x^2 + x - 1) + 15*x*log(-x^2 + x - 1) - 16*e^x*log(-x^2 + x - 1) - 40*log(x^2 - x + 1)

Mupad [B] (verification not implemented)

Time = 14.31 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.55 \[ \int \frac {40-95 x+30 x^2+e^x \left (16-38 x+12 x^2\right )+\left (15-15 x+15 x^2+e^x \left (-10+16 x-16 x^2+6 x^3\right )\right ) \log \left (-1+x-x^2\right )}{1-x+x^2} \, dx=\ln \left (-x^2+x-1\right )\,\left (15\,x+{\mathrm {e}}^x\,\left (6\,x-16\right )\right )-40\,\ln \left (x^2-x+1\right ) \]

[In]

int((log(x - x^2 - 1)*(15*x^2 - 15*x + exp(x)*(16*x - 16*x^2 + 6*x^3 - 10) + 15) - 95*x + exp(x)*(12*x^2 - 38*
x + 16) + 30*x^2 + 40)/(x^2 - x + 1),x)

[Out]

log(x - x^2 - 1)*(15*x + exp(x)*(6*x - 16)) - 40*log(x^2 - x + 1)