\(\int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} (e+x^2)}{3 x^2} \, dx\) [815]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 29 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=-8-e^{3 (-5+x)}+\frac {1}{3} e^{\frac {-e+x+x^2}{x}} \]

[Out]

1/3*exp((-exp(1)+x^2+x)/x)-8-exp(3*x-15)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.86, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 14, 2225, 6838} \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=\frac {1}{3} e^{x-\frac {e}{x}+1}-e^{3 x-15} \]

[In]

Int[(-9*E^(-15 + 3*x)*x^2 + E^((-E + x + x^2)/x)*(E + x^2))/(3*x^2),x]

[Out]

E^(1 - E/x + x)/3 - E^(-15 + 3*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6838

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q*(F^v/Log[F]), x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{x^2} \, dx \\ & = \frac {1}{3} \int \left (-9 e^{-15+3 x}+\frac {e^{1-\frac {e}{x}+x} \left (e+x^2\right )}{x^2}\right ) \, dx \\ & = \frac {1}{3} \int \frac {e^{1-\frac {e}{x}+x} \left (e+x^2\right )}{x^2} \, dx-3 \int e^{-15+3 x} \, dx \\ & = \frac {1}{3} e^{1-\frac {e}{x}+x}-e^{-15+3 x} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.86 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=\frac {1}{3} e^{1-\frac {e}{x}+x}-e^{-15+3 x} \]

[In]

Integrate[(-9*E^(-15 + 3*x)*x^2 + E^((-E + x + x^2)/x)*(E + x^2))/(3*x^2),x]

[Out]

E^(1 - E/x + x)/3 - E^(-15 + 3*x)

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.90

method result size
parts \(-{\mathrm e}^{3 x -15}+\frac {{\mathrm e}^{\frac {-{\mathrm e}+x^{2}+x}{x}}}{3}\) \(26\)
risch \(-{\mathrm e}^{3 x -15}+\frac {{\mathrm e}^{-\frac {-x^{2}+{\mathrm e}-x}{x}}}{3}\) \(29\)
parallelrisch \(-{\mathrm e}^{3 x -15}+\frac {{\mathrm e}^{-\frac {-x^{2}+{\mathrm e}-x}{x}}}{3}\) \(29\)
norman \(\frac {\frac {x \,{\mathrm e}^{\frac {-{\mathrm e}+x^{2}+x}{x}}}{3}-x \,{\mathrm e}^{3 x -15}}{x}\) \(32\)

[In]

int(1/3*(-9*x^2*exp(3*x-15)+(exp(1)+x^2)*exp((-exp(1)+x^2+x)/x))/x^2,x,method=_RETURNVERBOSE)

[Out]

-exp(3*x-15)+1/3*exp((-exp(1)+x^2+x)/x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.86 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=-e^{\left (3 \, x - 15\right )} + \frac {1}{3} \, e^{\left (\frac {x^{2} + x - e}{x}\right )} \]

[In]

integrate(1/3*(-9*x^2*exp(3*x-15)+(exp(1)+x^2)*exp((-exp(1)+x^2+x)/x))/x^2,x, algorithm="fricas")

[Out]

-e^(3*x - 15) + 1/3*e^((x^2 + x - e)/x)

Sympy [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.66 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=\frac {e^{\frac {x^{2} + x - e}{x}}}{3} - e^{3 x - 15} \]

[In]

integrate(1/3*(-9*x**2*exp(3*x-15)+(exp(1)+x**2)*exp((-exp(1)+x**2+x)/x))/x**2,x)

[Out]

exp((x**2 + x - E)/x)/3 - exp(3*x - 15)

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.83 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=-\frac {1}{3} \, {\left (3 \, e^{\left (3 \, x\right )} - e^{\left (x - \frac {e}{x} + 16\right )}\right )} e^{\left (-15\right )} \]

[In]

integrate(1/3*(-9*x^2*exp(3*x-15)+(exp(1)+x^2)*exp((-exp(1)+x^2+x)/x))/x^2,x, algorithm="maxima")

[Out]

-1/3*(3*e^(3*x) - e^(x - e/x + 16))*e^(-15)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.00 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=-\frac {1}{3} \, {\left (3 \, e^{\left (3 \, x\right )} - e^{\left (\frac {x^{2} + x - e}{x} + 15\right )}\right )} e^{\left (-15\right )} \]

[In]

integrate(1/3*(-9*x^2*exp(3*x-15)+(exp(1)+x^2)*exp((-exp(1)+x^2+x)/x))/x^2,x, algorithm="giac")

[Out]

-1/3*(3*e^(3*x) - e^((x^2 + x - e)/x + 15))*e^(-15)

Mupad [B] (verification not implemented)

Time = 8.21 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.79 \[ \int \frac {-9 e^{-15+3 x} x^2+e^{\frac {-e+x+x^2}{x}} \left (e+x^2\right )}{3 x^2} \, dx=\frac {{\mathrm {e}}^{-\frac {\mathrm {e}}{x}}\,\mathrm {e}\,{\mathrm {e}}^x}{3}-{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{-15} \]

[In]

int(((exp((x - exp(1) + x^2)/x)*(exp(1) + x^2))/3 - 3*x^2*exp(3*x - 15))/x^2,x)

[Out]

(exp(-exp(1)/x)*exp(1)*exp(x))/3 - exp(3*x)*exp(-15)