\(\int e^{60 x^2 \log (\frac {3}{x})+4 x^2 \log (\frac {3}{x}) \log (x)} (1-60 x^2+124 x^2 \log (\frac {3}{x})+(-4 x^2+8 x^2 \log (\frac {3}{x})) \log (x)) \, dx\) [9836]

   Optimal result
   Rubi [B] (verified)
   Mathematica [F]
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 66, antiderivative size = 27 \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=3^{4 x^2 (15+\log (x))} \left (\frac {1}{x}\right )^{-1+4 x^2 (15+\log (x))} \]

[Out]

x*exp(4*(ln(x)+15)*x^2*ln(3/x))

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(97\) vs. \(2(27)=54\).

Time = 0.25 (sec) , antiderivative size = 97, normalized size of antiderivative = 3.59, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {2326} \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=\frac {3^{60 x^2} \left (\frac {1}{x}\right )^{60 x^2} e^{4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (15 x^2-31 x^2 \log \left (\frac {3}{x}\right )+\left (x^2-2 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right )}{15 x-31 x \log \left (\frac {3}{x}\right )-2 x \log \left (\frac {3}{x}\right ) \log (x)+x \log (x)} \]

[In]

Int[E^(60*x^2*Log[3/x] + 4*x^2*Log[3/x]*Log[x])*(1 - 60*x^2 + 124*x^2*Log[3/x] + (-4*x^2 + 8*x^2*Log[3/x])*Log
[x]),x]

[Out]

(3^(60*x^2)*E^(4*x^2*Log[3/x]*Log[x])*(x^(-1))^(60*x^2)*(15*x^2 - 31*x^2*Log[3/x] + (x^2 - 2*x^2*Log[3/x])*Log
[x]))/(15*x - 31*x*Log[3/x] + x*Log[x] - 2*x*Log[3/x]*Log[x])

Rule 2326

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps \begin{align*} \text {integral}& = \frac {3^{60 x^2} e^{4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (\frac {1}{x}\right )^{60 x^2} \left (15 x^2-31 x^2 \log \left (\frac {3}{x}\right )+\left (x^2-2 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right )}{15 x-31 x \log \left (\frac {3}{x}\right )+x \log (x)-2 x \log \left (\frac {3}{x}\right ) \log (x)} \\ \end{align*}

Mathematica [F]

\[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=\int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx \]

[In]

Integrate[E^(60*x^2*Log[3/x] + 4*x^2*Log[3/x]*Log[x])*(1 - 60*x^2 + 124*x^2*Log[3/x] + (-4*x^2 + 8*x^2*Log[3/x
])*Log[x]),x]

[Out]

Integrate[E^(60*x^2*Log[3/x] + 4*x^2*Log[3/x]*Log[x])*(1 - 60*x^2 + 124*x^2*Log[3/x] + (-4*x^2 + 8*x^2*Log[3/x
])*Log[x]), x]

Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.70

method result size
parallelrisch \(x \,{\mathrm e}^{4 \left (\ln \left (x \right )+15\right ) x^{2} \ln \left (\frac {3}{x}\right )}\) \(19\)
default \({\mathrm e}^{4 x^{2} \ln \left (\frac {3}{x}\right ) \ln \left (x \right )+60 x^{2} \ln \left (\frac {3}{x}\right )} x\) \(29\)
risch \(x^{-4 x^{2} \left (\ln \left (x \right )-\ln \left (3\right )\right )} {\mathrm e}^{60 x^{2} \left (-\ln \left (x \right )+\ln \left (3\right )\right )} x\) \(30\)

[In]

int(((8*x^2*ln(3/x)-4*x^2)*ln(x)+124*x^2*ln(3/x)-60*x^2+1)*exp(4*x^2*ln(3/x)*ln(x)+60*x^2*ln(3/x)),x,method=_R
ETURNVERBOSE)

[Out]

x*exp(4*(ln(x)+15)*x^2*ln(3/x))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (17) = 34\).

Time = 0.24 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.37 \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=x e^{\left (-4 \, x^{2} \log \left (\frac {3}{x}\right )^{2} + 4 \, {\left (x^{2} \log \left (3\right ) + 15 \, x^{2}\right )} \log \left (\frac {3}{x}\right )\right )} \]

[In]

integrate(((8*x^2*log(3/x)-4*x^2)*log(x)+124*x^2*log(3/x)-60*x^2+1)*exp(4*x^2*log(3/x)*log(x)+60*x^2*log(3/x))
,x, algorithm="fricas")

[Out]

x*e^(-4*x^2*log(3/x)^2 + 4*(x^2*log(3) + 15*x^2)*log(3/x))

Sympy [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.07 \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=x e^{4 x^{2} \left (- \log {\left (x \right )} + \log {\left (3 \right )}\right ) \log {\left (x \right )} + 60 x^{2} \left (- \log {\left (x \right )} + \log {\left (3 \right )}\right )} \]

[In]

integrate(((8*x**2*ln(3/x)-4*x**2)*ln(x)+124*x**2*ln(3/x)-60*x**2+1)*exp(4*x**2*ln(3/x)*ln(x)+60*x**2*ln(3/x))
,x)

[Out]

x*exp(4*x**2*(-log(x) + log(3))*log(x) + 60*x**2*(-log(x) + log(3)))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 36 vs. \(2 (17) = 34\).

Time = 0.35 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.33 \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=x e^{\left (4 \, x^{2} \log \left (3\right ) \log \left (x\right ) - 4 \, x^{2} \log \left (x\right )^{2} + 60 \, x^{2} \log \left (3\right ) - 60 \, x^{2} \log \left (x\right )\right )} \]

[In]

integrate(((8*x^2*log(3/x)-4*x^2)*log(x)+124*x^2*log(3/x)-60*x^2+1)*exp(4*x^2*log(3/x)*log(x)+60*x^2*log(3/x))
,x, algorithm="maxima")

[Out]

x*e^(4*x^2*log(3)*log(x) - 4*x^2*log(x)^2 + 60*x^2*log(3) - 60*x^2*log(x))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 36 vs. \(2 (17) = 34\).

Time = 0.34 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.33 \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=x e^{\left (4 \, x^{2} \log \left (3\right ) \log \left (x\right ) - 4 \, x^{2} \log \left (x\right )^{2} + 60 \, x^{2} \log \left (3\right ) - 60 \, x^{2} \log \left (x\right )\right )} \]

[In]

integrate(((8*x^2*log(3/x)-4*x^2)*log(x)+124*x^2*log(3/x)-60*x^2+1)*exp(4*x^2*log(3/x)*log(x)+60*x^2*log(3/x))
,x, algorithm="giac")

[Out]

x*e^(4*x^2*log(3)*log(x) - 4*x^2*log(x)^2 + 60*x^2*log(3) - 60*x^2*log(x))

Mupad [B] (verification not implemented)

Time = 15.87 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.41 \[ \int e^{60 x^2 \log \left (\frac {3}{x}\right )+4 x^2 \log \left (\frac {3}{x}\right ) \log (x)} \left (1-60 x^2+124 x^2 \log \left (\frac {3}{x}\right )+\left (-4 x^2+8 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx=3^{60\,x^2}\,x\,x^{4\,x^2\,\ln \left (\frac {1}{x}\right )}\,x^{4\,x^2\,\ln \left (3\right )}\,{\left (\frac {1}{x}\right )}^{60\,x^2} \]

[In]

int(-exp(60*x^2*log(3/x) + 4*x^2*log(3/x)*log(x))*(log(x)*(4*x^2 - 8*x^2*log(3/x)) + 60*x^2 - 124*x^2*log(3/x)
 - 1),x)

[Out]

3^(60*x^2)*x*x^(4*x^2*log(1/x))*x^(4*x^2*log(3))*(1/x)^(60*x^2)