\(\int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx\) [9841]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 17 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=\log \left (5+\frac {2 e^{-7+e^5} \log (x)}{x^2}\right ) \]

[Out]

ln(5+2*exp(exp(5))/x^2/exp(1)/exp(3)^2*ln(x))

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.12, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2641, 6844, 31} \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=\log \left (\frac {2 e^{e^5} \log (x)}{x^2}+5 e^7\right ) \]

[In]

Int[(2*E^E^5 - 4*E^E^5*Log[x])/(5*E^7*x^3 + 2*E^E^5*x*Log[x]),x]

[Out]

Log[5*E^7 + (2*E^E^5*Log[x])/x^2]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2641

Int[(u_.)*((a_.)*(x_)^(m_.) + Log[(c_.)*(x_)^(n_.)]^(q_.)*(b_.)*(x_)^(r_.))^(p_.), x_Symbol] :> Int[u*x^(p*r)*
(a*x^(m - r) + b*Log[c*x^n]^q)^p, x] /; FreeQ[{a, b, c, m, n, p, q, r}, x] && IntegerQ[p]

Rule 6844

Int[(u_)*(v_)^(r_.)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x
] - q*v*D[w, x])]}, Dist[(-c)*q, Subst[Int[(a + b*x^q)^m, x], x, v^(m*p + r + 1)*w], x] /; FreeQ[c, x]] /; Fre
eQ[{a, b, m, p, q, r}, x] && EqQ[p + q*(m*p + r + 1), 0] && IntegerQ[q] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{x \left (5 e^7 x^2+2 e^{e^5} \log (x)\right )} \, dx \\ & = \left (2 e^{e^5}\right ) \text {Subst}\left (\int \frac {1}{5 e^7+2 e^{e^5} x} \, dx,x,\frac {\log (x)}{x^2}\right ) \\ & = \log \left (5 e^7+\frac {2 e^{e^5} \log (x)}{x^2}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.41 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=-2 \log (x)+\log \left (5 e^7 x^2+2 e^{e^5} \log (x)\right ) \]

[In]

Integrate[(2*E^E^5 - 4*E^E^5*Log[x])/(5*E^7*x^3 + 2*E^E^5*x*Log[x]),x]

[Out]

-2*Log[x] + Log[5*E^7*x^2 + 2*E^E^5*Log[x]]

Maple [A] (verified)

Time = 1.91 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.29

method result size
risch \(-2 \ln \left (x \right )+\ln \left (\ln \left (x \right )+\frac {5 x^{2} {\mathrm e}^{7-{\mathrm e}^{5}}}{2}\right )\) \(22\)
norman \(-2 \ln \left (x \right )+\ln \left (5 x^{2} {\mathrm e} \,{\mathrm e}^{6}+2 \,{\mathrm e}^{{\mathrm e}^{5}} \ln \left (x \right )\right )\) \(26\)
parallelrisch \(\ln \left (\frac {\left (5 x^{2} {\mathrm e} \,{\mathrm e}^{6}+2 \,{\mathrm e}^{{\mathrm e}^{5}} \ln \left (x \right )\right ) {\mathrm e}^{-1} {\mathrm e}^{-6}}{5}\right )-2 \ln \left (x \right )\) \(36\)
default \(-2 \,{\mathrm e}^{{\mathrm e}^{5}} \left ({\mathrm e}^{-{\mathrm e}^{5}} \ln \left (x \right )-\frac {{\mathrm e}^{-{\mathrm e}^{5}} \ln \left (5 x^{2} {\mathrm e} \,{\mathrm e}^{6}+2 \,{\mathrm e}^{{\mathrm e}^{5}} \ln \left (x \right )\right )}{2}\right )\) \(42\)

[In]

int((-4*exp(exp(5))*ln(x)+2*exp(exp(5)))/(2*x*exp(exp(5))*ln(x)+5*x^3*exp(1)*exp(3)^2),x,method=_RETURNVERBOSE
)

[Out]

-2*ln(x)+ln(ln(x)+5/2*x^2*exp(7-exp(5)))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.24 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=\log \left (5 \, x^{2} e^{7} + 2 \, e^{\left (e^{5}\right )} \log \left (x\right )\right ) - 2 \, \log \left (x\right ) \]

[In]

integrate((-4*exp(exp(5))*log(x)+2*exp(exp(5)))/(2*x*exp(exp(5))*log(x)+5*x^3*exp(1)*exp(3)^2),x, algorithm="f
ricas")

[Out]

log(5*x^2*e^7 + 2*e^(e^5)*log(x)) - 2*log(x)

Sympy [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.41 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=- 2 \log {\left (x \right )} + \log {\left (\frac {5 x^{2} e^{7}}{2 e^{e^{5}}} + \log {\left (x \right )} \right )} \]

[In]

integrate((-4*exp(exp(5))*ln(x)+2*exp(exp(5)))/(2*x*exp(exp(5))*ln(x)+5*x**3*exp(1)*exp(3)**2),x)

[Out]

-2*log(x) + log(5*x**2*exp(7)*exp(-exp(5))/2 + log(x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.65 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=\log \left (\frac {1}{2} \, {\left (5 \, x^{2} e^{7} + 2 \, e^{\left (e^{5}\right )} \log \left (x\right )\right )} e^{\left (-e^{5}\right )}\right ) - 2 \, \log \left (x\right ) \]

[In]

integrate((-4*exp(exp(5))*log(x)+2*exp(exp(5)))/(2*x*exp(exp(5))*log(x)+5*x^3*exp(1)*exp(3)^2),x, algorithm="m
axima")

[Out]

log(1/2*(5*x^2*e^7 + 2*e^(e^5)*log(x))*e^(-e^5)) - 2*log(x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.24 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=\log \left (-5 \, x^{2} e^{7} - 2 \, e^{\left (e^{5}\right )} \log \left (x\right )\right ) - 2 \, \log \left (x\right ) \]

[In]

integrate((-4*exp(exp(5))*log(x)+2*exp(exp(5)))/(2*x*exp(exp(5))*log(x)+5*x^3*exp(1)*exp(3)^2),x, algorithm="g
iac")

[Out]

log(-5*x^2*e^7 - 2*e^(e^5)*log(x)) - 2*log(x)

Mupad [B] (verification not implemented)

Time = 16.74 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.12 \[ \int \frac {2 e^{e^5}-4 e^{e^5} \log (x)}{5 e^7 x^3+2 e^{e^5} x \log (x)} \, dx=\ln \left (\frac {2\,{\mathrm {e}}^{{\mathrm {e}}^5-7}\,\ln \left (x\right )}{5}+x^2\right )-2\,\ln \left (x\right ) \]

[In]

int((2*exp(exp(5)) - 4*exp(exp(5))*log(x))/(5*x^3*exp(7) + 2*x*exp(exp(5))*log(x)),x)

[Out]

log((2*exp(exp(5) - 7)*log(x))/5 + x^2) - 2*log(x)