\(\int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx\) [211]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 80 \[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=\frac {a (a+b x) \Gamma \left (\frac {1}{3},-(a+b x)^3\right )}{3 b^2 \sqrt [3]{-(a+b x)^3}}-\frac {(a+b x)^2 \Gamma \left (\frac {2}{3},-(a+b x)^3\right )}{3 b^2 \left (-(a+b x)^3\right )^{2/3}} \]

[Out]

1/3*a*(b*x+a)*GAMMA(1/3,-(b*x+a)^3)/b^2/(-(b*x+a)^3)^(1/3)-1/3*(b*x+a)^2*GAMMA(2/3,-(b*x+a)^3)/b^2/(-(b*x+a)^3
)^(2/3)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {2259, 2258, 2239, 2250} \[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=\frac {a (a+b x) \Gamma \left (\frac {1}{3},-(a+b x)^3\right )}{3 b^2 \sqrt [3]{-(a+b x)^3}}-\frac {(a+b x)^2 \Gamma \left (\frac {2}{3},-(a+b x)^3\right )}{3 b^2 \left (-(a+b x)^3\right )^{2/3}} \]

[In]

Int[E^(a^3 + 3*a^2*b*x + 3*a*b^2*x^2 + b^3*x^3)*x,x]

[Out]

(a*(a + b*x)*Gamma[1/3, -(a + b*x)^3])/(3*b^2*(-(a + b*x)^3)^(1/3)) - ((a + b*x)^2*Gamma[2/3, -(a + b*x)^3])/(
3*b^2*(-(a + b*x)^3)^(2/3))

Rule 2239

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[(-F^a)*(c + d*x)*(Gamma[1/n, (-b)*(c + d
*x)^n*Log[F]]/(d*n*((-b)*(c + d*x)^n*Log[F])^(1/n))), x] /; FreeQ[{F, a, b, c, d, n}, x] &&  !IntegerQ[2/n]

Rule 2250

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(-F^a)*((e +
f*x)^(m + 1)/(f*n*((-b)*(c + d*x)^n*Log[F])^((m + 1)/n)))*Gamma[(m + 1)/n, (-b)*(c + d*x)^n*Log[F]], x] /; Fre
eQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0]

Rule 2258

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*(u_), x_Symbol] :> Int[ExpandLinearProduct[F^(a + b*(c + d*
x)^n), u, c, d, x], x] /; FreeQ[{F, a, b, c, d, n}, x] && PolynomialQ[u, x]

Rule 2259

Int[(u_.)*(F_)^((a_.) + (b_.)*(v_)), x_Symbol] :> Int[u*F^(a + b*NormalizePowerOfLinear[v, x]), x] /; FreeQ[{F
, a, b}, x] && PolynomialQ[u, x] && PowerOfLinearQ[v, x] &&  !PowerOfLinearMatchQ[v, x]

Rubi steps \begin{align*} \text {integral}& = \int e^{(a+b x)^3} x \, dx \\ & = \int \left (-\frac {a e^{(a+b x)^3}}{b}+\frac {e^{(a+b x)^3} (a+b x)}{b}\right ) \, dx \\ & = \frac {\int e^{(a+b x)^3} (a+b x) \, dx}{b}-\frac {a \int e^{(a+b x)^3} \, dx}{b} \\ & = \frac {a (a+b x) \Gamma \left (\frac {1}{3},-(a+b x)^3\right )}{3 b^2 \sqrt [3]{-(a+b x)^3}}-\frac {(a+b x)^2 \Gamma \left (\frac {2}{3},-(a+b x)^3\right )}{3 b^2 \left (-(a+b x)^3\right )^{2/3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.92 \[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=\frac {(a+b x) \left (a \sqrt [3]{-(a+b x)^3} \Gamma \left (\frac {1}{3},-(a+b x)^3\right )-(a+b x) \Gamma \left (\frac {2}{3},-(a+b x)^3\right )\right )}{3 b^2 \left (-(a+b x)^3\right )^{2/3}} \]

[In]

Integrate[E^(a^3 + 3*a^2*b*x + 3*a*b^2*x^2 + b^3*x^3)*x,x]

[Out]

((a + b*x)*(a*(-(a + b*x)^3)^(1/3)*Gamma[1/3, -(a + b*x)^3] - (a + b*x)*Gamma[2/3, -(a + b*x)^3]))/(3*b^2*(-(a
 + b*x)^3)^(2/3))

Maple [F]

\[\int {\mathrm e}^{b^{3} x^{3}+3 a \,b^{2} x^{2}+3 a^{2} b x +a^{3}} x d x\]

[In]

int(exp(b^3*x^3+3*a*b^2*x^2+3*a^2*b*x+a^3)*x,x)

[Out]

int(exp(b^3*x^3+3*a*b^2*x^2+3*a^2*b*x+a^3)*x,x)

Fricas [A] (verification not implemented)

none

Time = 0.08 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.11 \[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=-\frac {\left (-b^{3}\right )^{\frac {2}{3}} a \Gamma \left (\frac {1}{3}, -b^{3} x^{3} - 3 \, a b^{2} x^{2} - 3 \, a^{2} b x - a^{3}\right ) - \left (-b^{3}\right )^{\frac {1}{3}} b \Gamma \left (\frac {2}{3}, -b^{3} x^{3} - 3 \, a b^{2} x^{2} - 3 \, a^{2} b x - a^{3}\right )}{3 \, b^{4}} \]

[In]

integrate(exp(b^3*x^3+3*a*b^2*x^2+3*a^2*b*x+a^3)*x,x, algorithm="fricas")

[Out]

-1/3*((-b^3)^(2/3)*a*gamma(1/3, -b^3*x^3 - 3*a*b^2*x^2 - 3*a^2*b*x - a^3) - (-b^3)^(1/3)*b*gamma(2/3, -b^3*x^3
 - 3*a*b^2*x^2 - 3*a^2*b*x - a^3))/b^4

Sympy [F]

\[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=e^{a^{3}} \int x e^{b^{3} x^{3}} e^{3 a b^{2} x^{2}} e^{3 a^{2} b x}\, dx \]

[In]

integrate(exp(b**3*x**3+3*a*b**2*x**2+3*a**2*b*x+a**3)*x,x)

[Out]

exp(a**3)*Integral(x*exp(b**3*x**3)*exp(3*a*b**2*x**2)*exp(3*a**2*b*x), x)

Maxima [F]

\[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=\int { x e^{\left (b^{3} x^{3} + 3 \, a b^{2} x^{2} + 3 \, a^{2} b x + a^{3}\right )} \,d x } \]

[In]

integrate(exp(b^3*x^3+3*a*b^2*x^2+3*a^2*b*x+a^3)*x,x, algorithm="maxima")

[Out]

integrate(x*e^(b^3*x^3 + 3*a*b^2*x^2 + 3*a^2*b*x + a^3), x)

Giac [F]

\[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=\int { x e^{\left (b^{3} x^{3} + 3 \, a b^{2} x^{2} + 3 \, a^{2} b x + a^{3}\right )} \,d x } \]

[In]

integrate(exp(b^3*x^3+3*a*b^2*x^2+3*a^2*b*x+a^3)*x,x, algorithm="giac")

[Out]

integrate(x*e^(b^3*x^3 + 3*a*b^2*x^2 + 3*a^2*b*x + a^3), x)

Mupad [F(-1)]

Timed out. \[ \int e^{a^3+3 a^2 b x+3 a b^2 x^2+b^3 x^3} x \, dx=\int x\,{\mathrm {e}}^{a^3+3\,a^2\,b\,x+3\,a\,b^2\,x^2+b^3\,x^3} \,d x \]

[In]

int(x*exp(a^3 + b^3*x^3 + 3*a*b^2*x^2 + 3*a^2*b*x),x)

[Out]

int(x*exp(a^3 + b^3*x^3 + 3*a*b^2*x^2 + 3*a^2*b*x), x)