\(\int \frac {e^{4 x}}{(a+b e^{2 x})^4} \, dx\) [25]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 38 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=\frac {a}{6 b^2 \left (a+b e^{2 x}\right )^3}-\frac {1}{4 b^2 \left (a+b e^{2 x}\right )^2} \]

[Out]

1/6*a/b^2/(a+b*exp(2*x))^3-1/4/b^2/(a+b*exp(2*x))^2

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2280, 45} \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=\frac {a}{6 b^2 \left (a+b e^{2 x}\right )^3}-\frac {1}{4 b^2 \left (a+b e^{2 x}\right )^2} \]

[In]

Int[E^(4*x)/(a + b*E^(2*x))^4,x]

[Out]

a/(6*b^2*(a + b*E^(2*x))^3) - 1/(4*b^2*(a + b*E^(2*x))^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2280

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[g*h*(Log[G]/(d*e*Log[F]))]}, Dist[Denominator[m]*(G^(f*h - c*g*(h/d))/(d*e*Log[F])), Subst
[Int[x^(Numerator[m] - 1)*(a + b*x^Denominator[m])^p, x], x, F^(e*((c + d*x)/Denominator[m]))], x] /; LeQ[m, -
1] || GeQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {x}{(a+b x)^4} \, dx,x,e^{2 x}\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \left (-\frac {a}{b (a+b x)^4}+\frac {1}{b (a+b x)^3}\right ) \, dx,x,e^{2 x}\right ) \\ & = \frac {a}{6 b^2 \left (a+b e^{2 x}\right )^3}-\frac {1}{4 b^2 \left (a+b e^{2 x}\right )^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.79 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=\frac {-a-3 b e^{2 x}}{12 b^2 \left (a+b e^{2 x}\right )^3} \]

[In]

Integrate[E^(4*x)/(a + b*E^(2*x))^4,x]

[Out]

(-a - 3*b*E^(2*x))/(12*b^2*(a + b*E^(2*x))^3)

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.66

method result size
risch \(-\frac {3 b \,{\mathrm e}^{2 x}+a}{12 b^{2} \left (a +b \,{\mathrm e}^{2 x}\right )^{3}}\) \(25\)
norman \(\frac {-\frac {a}{12 b^{2}}-\frac {{\mathrm e}^{2 x}}{4 b}}{\left (a +b \,{\mathrm e}^{2 x}\right )^{3}}\) \(28\)
default \(\frac {a}{6 b^{2} \left (a +b \,{\mathrm e}^{2 x}\right )^{3}}-\frac {1}{4 b^{2} \left (a +b \,{\mathrm e}^{2 x}\right )^{2}}\) \(33\)
parallelrisch \(\frac {b^{4} {\mathrm e}^{4 x} {\mathrm e}^{2 x}+3 \,{\mathrm e}^{4 x} b^{3} a}{12 b^{3} a^{2} \left (a +b \,{\mathrm e}^{2 x}\right )^{3}}\) \(42\)

[In]

int(exp(4*x)/(a+b*exp(2*x))^4,x,method=_RETURNVERBOSE)

[Out]

-1/12*(3*b*exp(2*x)+a)/b^2/(a+b*exp(2*x))^3

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.34 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=-\frac {3 \, b e^{\left (2 \, x\right )} + a}{12 \, {\left (b^{5} e^{\left (6 \, x\right )} + 3 \, a b^{4} e^{\left (4 \, x\right )} + 3 \, a^{2} b^{3} e^{\left (2 \, x\right )} + a^{3} b^{2}\right )}} \]

[In]

integrate(exp(4*x)/(a+b*exp(2*x))^4,x, algorithm="fricas")

[Out]

-1/12*(3*b*e^(2*x) + a)/(b^5*e^(6*x) + 3*a*b^4*e^(4*x) + 3*a^2*b^3*e^(2*x) + a^3*b^2)

Sympy [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.42 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=\frac {- a - 3 b e^{2 x}}{12 a^{3} b^{2} + 36 a^{2} b^{3} e^{2 x} + 36 a b^{4} e^{4 x} + 12 b^{5} e^{6 x}} \]

[In]

integrate(exp(4*x)/(a+b*exp(2*x))**4,x)

[Out]

(-a - 3*b*exp(2*x))/(12*a**3*b**2 + 36*a**2*b**3*exp(2*x) + 36*a*b**4*exp(4*x) + 12*b**5*exp(6*x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 91 vs. \(2 (32) = 64\).

Time = 0.18 (sec) , antiderivative size = 91, normalized size of antiderivative = 2.39 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=-\frac {b e^{\left (2 \, x\right )}}{4 \, {\left (b^{5} e^{\left (6 \, x\right )} + 3 \, a b^{4} e^{\left (4 \, x\right )} + 3 \, a^{2} b^{3} e^{\left (2 \, x\right )} + a^{3} b^{2}\right )}} - \frac {a}{12 \, {\left (b^{5} e^{\left (6 \, x\right )} + 3 \, a b^{4} e^{\left (4 \, x\right )} + 3 \, a^{2} b^{3} e^{\left (2 \, x\right )} + a^{3} b^{2}\right )}} \]

[In]

integrate(exp(4*x)/(a+b*exp(2*x))^4,x, algorithm="maxima")

[Out]

-1/4*b*e^(2*x)/(b^5*e^(6*x) + 3*a*b^4*e^(4*x) + 3*a^2*b^3*e^(2*x) + a^3*b^2) - 1/12*a/(b^5*e^(6*x) + 3*a*b^4*e
^(4*x) + 3*a^2*b^3*e^(2*x) + a^3*b^2)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.63 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=-\frac {3 \, b e^{\left (2 \, x\right )} + a}{12 \, {\left (b e^{\left (2 \, x\right )} + a\right )}^{3} b^{2}} \]

[In]

integrate(exp(4*x)/(a+b*exp(2*x))^4,x, algorithm="giac")

[Out]

-1/12*(3*b*e^(2*x) + a)/((b*e^(2*x) + a)^3*b^2)

Mupad [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.45 \[ \int \frac {e^{4 x}}{\left (a+b e^{2 x}\right )^4} \, dx=\frac {\frac {{\mathrm {e}}^{4\,x}}{4\,a}+\frac {b\,{\mathrm {e}}^{6\,x}}{12\,a^2}}{a^3+3\,{\mathrm {e}}^{2\,x}\,a^2\,b+3\,{\mathrm {e}}^{4\,x}\,a\,b^2+{\mathrm {e}}^{6\,x}\,b^3} \]

[In]

int(exp(4*x)/(a + b*exp(2*x))^4,x)

[Out]

(exp(4*x)/(4*a) + (b*exp(6*x))/(12*a^2))/(b^3*exp(6*x) + a^3 + 3*a^2*b*exp(2*x) + 3*a*b^2*exp(4*x))