\(\int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx\) [471]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 186 \[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=\frac {e^{d+e x}}{c e}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d-\frac {\left (b-\sqrt {b^2-4 a c}\right ) e}{2 c}} \operatorname {ExpIntegralEi}\left (\frac {e \left (b-\sqrt {b^2-4 a c}+2 c x\right )}{2 c}\right )}{2 c^2}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d-\frac {\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c}} \operatorname {ExpIntegralEi}\left (\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{2 c}\right )}{2 c^2} \]

[Out]

exp(e*x+d)/c/e-1/2*exp(d-1/2*e*(b-(-4*a*c+b^2)^(1/2))/c)*Ei(1/2*e*(b+2*c*x-(-4*a*c+b^2)^(1/2))/c)*(b+(2*a*c-b^
2)/(-4*a*c+b^2)^(1/2))/c^2-1/2*exp(d-1/2*e*(b+(-4*a*c+b^2)^(1/2))/c)*Ei(1/2*e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/c)*
(b+(-2*a*c+b^2)/(-4*a*c+b^2)^(1/2))/c^2

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2302, 2225, 2209} \[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d-\frac {e \left (b-\sqrt {b^2-4 a c}\right )}{2 c}} \operatorname {ExpIntegralEi}\left (\frac {e \left (b+2 c x-\sqrt {b^2-4 a c}\right )}{2 c}\right )}{2 c^2}-\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) e^{d-\frac {e \left (\sqrt {b^2-4 a c}+b\right )}{2 c}} \operatorname {ExpIntegralEi}\left (\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c}\right )}{2 c^2}+\frac {e^{d+e x}}{c e} \]

[In]

Int[(E^(d + e*x)*x^2)/(a + b*x + c*x^2),x]

[Out]

E^(d + e*x)/(c*e) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*E^(d - ((b - Sqrt[b^2 - 4*a*c])*e)/(2*c))*ExpIntegr
alEi[(e*(b - Sqrt[b^2 - 4*a*c] + 2*c*x))/(2*c)])/(2*c^2) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*E^(d - ((b +
 Sqrt[b^2 - 4*a*c])*e)/(2*c))*ExpIntegralEi[(e*(b + Sqrt[b^2 - 4*a*c] + 2*c*x))/(2*c)])/(2*c^2)

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2302

Int[((F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))*(u_)^(m_.))/((a_.) + (b_.)*(x_) + (c_)*(x_)^2), x_Symbol] :> Int[
ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] && Poly
nomialQ[u, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {e^{d+e x}}{c}-\frac {e^{d+e x} (a+b x)}{c \left (a+b x+c x^2\right )}\right ) \, dx \\ & = \frac {\int e^{d+e x} \, dx}{c}-\frac {\int \frac {e^{d+e x} (a+b x)}{a+b x+c x^2} \, dx}{c} \\ & = \frac {e^{d+e x}}{c e}-\frac {\int \left (\frac {\left (b+\frac {-b^2+2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d+e x}}{b-\sqrt {b^2-4 a c}+2 c x}+\frac {\left (b-\frac {-b^2+2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d+e x}}{b+\sqrt {b^2-4 a c}+2 c x}\right ) \, dx}{c} \\ & = \frac {e^{d+e x}}{c e}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {e^{d+e x}}{b-\sqrt {b^2-4 a c}+2 c x} \, dx}{c}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {e^{d+e x}}{b+\sqrt {b^2-4 a c}+2 c x} \, dx}{c} \\ & = \frac {e^{d+e x}}{c e}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d-\frac {\left (b-\sqrt {b^2-4 a c}\right ) e}{2 c}} \text {Ei}\left (\frac {e \left (b-\sqrt {b^2-4 a c}+2 c x\right )}{2 c}\right )}{2 c^2}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) e^{d-\frac {\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c}} \text {Ei}\left (\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{2 c}\right )}{2 c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.89 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.17 \[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=-\frac {e^{d-\frac {\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c}} \left (-2 c \sqrt {b^2-4 a c} e^{\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{2 c}}+\left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) e e^{\frac {\sqrt {b^2-4 a c} e}{c}} \operatorname {ExpIntegralEi}\left (\frac {e \left (b-\sqrt {b^2-4 a c}+2 c x\right )}{2 c}\right )+\left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) e \operatorname {ExpIntegralEi}\left (\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{2 c}\right )\right )}{2 c^2 \sqrt {b^2-4 a c} e} \]

[In]

Integrate[(E^(d + e*x)*x^2)/(a + b*x + c*x^2),x]

[Out]

-1/2*(E^(d - ((b + Sqrt[b^2 - 4*a*c])*e)/(2*c))*(-2*c*Sqrt[b^2 - 4*a*c]*E^((e*(b + Sqrt[b^2 - 4*a*c] + 2*c*x))
/(2*c)) + (-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*e*E^((Sqrt[b^2 - 4*a*c]*e)/c)*ExpIntegralEi[(e*(b - Sqrt[b^2 -
4*a*c] + 2*c*x))/(2*c)] + (b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*e*ExpIntegralEi[(e*(b + Sqrt[b^2 - 4*a*c] + 2*c*
x))/(2*c)]))/(c^2*Sqrt[b^2 - 4*a*c]*e)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(560\) vs. \(2(160)=320\).

Time = 0.61 (sec) , antiderivative size = 561, normalized size of antiderivative = 3.02

method result size
risch \(\frac {e \,{\mathrm e}^{-\frac {b e -2 c d -\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}} \operatorname {Ei}_{1}\left (\frac {-b e +2 c d -2 c \left (e x +d \right )+\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}\right ) a}{c \sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}-\frac {e \,{\mathrm e}^{-\frac {b e -2 c d -\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}} \operatorname {Ei}_{1}\left (\frac {-b e +2 c d -2 c \left (e x +d \right )+\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}\right ) b^{2}}{2 c^{2} \sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}-\frac {e \,{\mathrm e}^{-\frac {b e -2 c d +\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}} \operatorname {Ei}_{1}\left (-\frac {b e -2 c d +2 c \left (e x +d \right )+\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}\right ) a}{c \sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}+\frac {e \,{\mathrm e}^{-\frac {b e -2 c d +\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}} \operatorname {Ei}_{1}\left (-\frac {b e -2 c d +2 c \left (e x +d \right )+\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}\right ) b^{2}}{2 c^{2} \sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}+\frac {{\mathrm e}^{-\frac {b e -2 c d -\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}} \operatorname {Ei}_{1}\left (\frac {-b e +2 c d -2 c \left (e x +d \right )+\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}\right ) b}{2 c^{2}}+\frac {{\mathrm e}^{-\frac {b e -2 c d +\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}} \operatorname {Ei}_{1}\left (-\frac {b e -2 c d +2 c \left (e x +d \right )+\sqrt {-4 a c \,e^{2}+b^{2} e^{2}}}{2 c}\right ) b}{2 c^{2}}+\frac {{\mathrm e}^{e x +d}}{c e}\) \(561\)
derivativedivides \(\text {Expression too large to display}\) \(1730\)
default \(\text {Expression too large to display}\) \(1730\)

[In]

int(exp(e*x+d)*x^2/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)

[Out]

e/c/(-4*a*c*e^2+b^2*e^2)^(1/2)*exp(-1/2/c*(b*e-2*c*d-(-4*a*c*e^2+b^2*e^2)^(1/2)))*Ei(1,1/2*(-b*e+2*c*d-2*c*(e*
x+d)+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*a-1/2*e/c^2/(-4*a*c*e^2+b^2*e^2)^(1/2)*exp(-1/2/c*(b*e-2*c*d-(-4*a*c*e^2+b
^2*e^2)^(1/2)))*Ei(1,1/2*(-b*e+2*c*d-2*c*(e*x+d)+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*b^2-e/c/(-4*a*c*e^2+b^2*e^2)^(
1/2)*exp(-1/2*(b*e-2*c*d+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*Ei(1,-1/2*(b*e-2*c*d+2*c*(e*x+d)+(-4*a*c*e^2+b^2*e^2)^
(1/2))/c)*a+1/2*e/c^2/(-4*a*c*e^2+b^2*e^2)^(1/2)*exp(-1/2*(b*e-2*c*d+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*Ei(1,-1/2*
(b*e-2*c*d+2*c*(e*x+d)+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*b^2+1/2/c^2*exp(-1/2/c*(b*e-2*c*d-(-4*a*c*e^2+b^2*e^2)^(
1/2)))*Ei(1,1/2*(-b*e+2*c*d-2*c*(e*x+d)+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*b+1/2/c^2*exp(-1/2*(b*e-2*c*d+(-4*a*c*e
^2+b^2*e^2)^(1/2))/c)*Ei(1,-1/2*(b*e-2*c*d+2*c*(e*x+d)+(-4*a*c*e^2+b^2*e^2)^(1/2))/c)*b+exp(e*x+d)/c/e

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.44 \[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=-\frac {{\left ({\left (b^{3} - 4 \, a b c\right )} e - {\left (b^{2} c - 2 \, a c^{2}\right )} \sqrt {\frac {{\left (b^{2} - 4 \, a c\right )} e^{2}}{c^{2}}}\right )} {\rm Ei}\left (\frac {2 \, c e x + b e - c \sqrt {\frac {{\left (b^{2} - 4 \, a c\right )} e^{2}}{c^{2}}}}{2 \, c}\right ) e^{\left (\frac {2 \, c d - b e + c \sqrt {\frac {{\left (b^{2} - 4 \, a c\right )} e^{2}}{c^{2}}}}{2 \, c}\right )} + {\left ({\left (b^{3} - 4 \, a b c\right )} e + {\left (b^{2} c - 2 \, a c^{2}\right )} \sqrt {\frac {{\left (b^{2} - 4 \, a c\right )} e^{2}}{c^{2}}}\right )} {\rm Ei}\left (\frac {2 \, c e x + b e + c \sqrt {\frac {{\left (b^{2} - 4 \, a c\right )} e^{2}}{c^{2}}}}{2 \, c}\right ) e^{\left (\frac {2 \, c d - b e - c \sqrt {\frac {{\left (b^{2} - 4 \, a c\right )} e^{2}}{c^{2}}}}{2 \, c}\right )} - 2 \, {\left (b^{2} c - 4 \, a c^{2}\right )} e^{\left (e x + d\right )}}{2 \, {\left (b^{2} c^{2} - 4 \, a c^{3}\right )} e} \]

[In]

integrate(exp(e*x+d)*x^2/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

-1/2*(((b^3 - 4*a*b*c)*e - (b^2*c - 2*a*c^2)*sqrt((b^2 - 4*a*c)*e^2/c^2))*Ei(1/2*(2*c*e*x + b*e - c*sqrt((b^2
- 4*a*c)*e^2/c^2))/c)*e^(1/2*(2*c*d - b*e + c*sqrt((b^2 - 4*a*c)*e^2/c^2))/c) + ((b^3 - 4*a*b*c)*e + (b^2*c -
2*a*c^2)*sqrt((b^2 - 4*a*c)*e^2/c^2))*Ei(1/2*(2*c*e*x + b*e + c*sqrt((b^2 - 4*a*c)*e^2/c^2))/c)*e^(1/2*(2*c*d
- b*e - c*sqrt((b^2 - 4*a*c)*e^2/c^2))/c) - 2*(b^2*c - 4*a*c^2)*e^(e*x + d))/((b^2*c^2 - 4*a*c^3)*e)

Sympy [F]

\[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=e^{d} \int \frac {x^{2} e^{e x}}{a + b x + c x^{2}}\, dx \]

[In]

integrate(exp(e*x+d)*x**2/(c*x**2+b*x+a),x)

[Out]

exp(d)*Integral(x**2*exp(e*x)/(a + b*x + c*x**2), x)

Maxima [F]

\[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=\int { \frac {x^{2} e^{\left (e x + d\right )}}{c x^{2} + b x + a} \,d x } \]

[In]

integrate(exp(e*x+d)*x^2/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

x^2*e^(e*x + d)/(c*e*x^2 + b*e*x + a*e) - integrate((b*x^2*e^d + 2*a*x*e^d)*e^(e*x)/(c^2*e*x^4 + 2*b*c*e*x^3 +
 2*a*b*e*x + a^2*e + (b^2*e + 2*a*c*e)*x^2), x)

Giac [F]

\[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=\int { \frac {x^{2} e^{\left (e x + d\right )}}{c x^{2} + b x + a} \,d x } \]

[In]

integrate(exp(e*x+d)*x^2/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

integrate(x^2*e^(e*x + d)/(c*x^2 + b*x + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{d+e x} x^2}{a+b x+c x^2} \, dx=\int \frac {x^2\,{\mathrm {e}}^{d+e\,x}}{c\,x^2+b\,x+a} \,d x \]

[In]

int((x^2*exp(d + e*x))/(a + b*x + c*x^2),x)

[Out]

int((x^2*exp(d + e*x))/(a + b*x + c*x^2), x)