\(\int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx\) [504]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 96 \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\frac {2^{-1+2 x} \sqrt {a-2^{-x} b}}{a \log (2)}+\frac {3\ 2^{-2+x} b \sqrt {a-2^{-x} b}}{a^2 \log (2)}+\frac {3 b^2 \text {arctanh}\left (\frac {\sqrt {a-2^{-x} b}}{\sqrt {a}}\right )}{4 a^{5/2} \log (2)} \]

[Out]

3/4*b^2*arctanh((a-b/(2^x))^(1/2)/a^(1/2))/a^(5/2)/ln(2)+2^(-1+2*x)*(a-b/(2^x))^(1/2)/a/ln(2)+3*2^(-2+x)*b*(a-
b/(2^x))^(1/2)/a^2/ln(2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2280, 44, 65, 214} \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\frac {3 b^2 \text {arctanh}\left (\frac {\sqrt {a-b 2^{-x}}}{\sqrt {a}}\right )}{4 a^{5/2} \log (2)}+\frac {3 b 2^{x-2} \sqrt {a-b 2^{-x}}}{a^2 \log (2)}+\frac {2^{2 x-1} \sqrt {a-b 2^{-x}}}{a \log (2)} \]

[In]

Int[2^(2*x)/Sqrt[a - b/2^x],x]

[Out]

(2^(-1 + 2*x)*Sqrt[a - b/2^x])/(a*Log[2]) + (3*2^(-2 + x)*b*Sqrt[a - b/2^x])/(a^2*Log[2]) + (3*b^2*ArcTanh[Sqr
t[a - b/2^x]/Sqrt[a]])/(4*a^(5/2)*Log[2])

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2280

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[g*h*(Log[G]/(d*e*Log[F]))]}, Dist[Denominator[m]*(G^(f*h - c*g*(h/d))/(d*e*Log[F])), Subst
[Int[x^(Numerator[m] - 1)*(a + b*x^Denominator[m])^p, x], x, F^(e*((c + d*x)/Denominator[m]))], x] /; LeQ[m, -
1] || GeQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {1}{x^3 \sqrt {a-b x}} \, dx,x,2^{-x}\right )}{\log (2)} \\ & = \frac {2^{-1+2 x} \sqrt {a-2^{-x} b}}{a \log (2)}-\frac {(3 b) \text {Subst}\left (\int \frac {1}{x^2 \sqrt {a-b x}} \, dx,x,2^{-x}\right )}{4 a \log (2)} \\ & = \frac {2^{-1+2 x} \sqrt {a-2^{-x} b}}{a \log (2)}+\frac {3\ 2^{-2+x} b \sqrt {a-2^{-x} b}}{a^2 \log (2)}-\frac {\left (3 b^2\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a-b x}} \, dx,x,2^{-x}\right )}{8 a^2 \log (2)} \\ & = \frac {2^{-1+2 x} \sqrt {a-2^{-x} b}}{a \log (2)}+\frac {3\ 2^{-2+x} b \sqrt {a-2^{-x} b}}{a^2 \log (2)}+\frac {(3 b) \text {Subst}\left (\int \frac {1}{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a-2^{-x} b}\right )}{4 a^2 \log (2)} \\ & = \frac {2^{-1+2 x} \sqrt {a-2^{-x} b}}{a \log (2)}+\frac {3\ 2^{-2+x} b \sqrt {a-2^{-x} b}}{a^2 \log (2)}+\frac {3 b^2 \tanh ^{-1}\left (\frac {\sqrt {a-2^{-x} b}}{\sqrt {a}}\right )}{4 a^{5/2} \log (2)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.20 \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\frac {2^{-2-\frac {x}{2}} \left (2^{x/2} \sqrt {a} \left (2^{1+2 x} a^2+2^x a b-3 b^2\right )+3 \sqrt {2^x a-b} b^2 \text {arctanh}\left (\frac {2^{x/2} \sqrt {a}}{\sqrt {2^x a-b}}\right )\right )}{a^{5/2} \sqrt {a-2^{-x} b} \log (2)} \]

[In]

Integrate[2^(2*x)/Sqrt[a - b/2^x],x]

[Out]

(2^(-2 - x/2)*(2^(x/2)*Sqrt[a]*(2^(1 + 2*x)*a^2 + 2^x*a*b - 3*b^2) + 3*Sqrt[2^x*a - b]*b^2*ArcTanh[(2^(x/2)*Sq
rt[a])/Sqrt[2^x*a - b]]))/(a^(5/2)*Sqrt[a - b/2^x]*Log[2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(196\) vs. \(2(84)=168\).

Time = 0.32 (sec) , antiderivative size = 197, normalized size of antiderivative = 2.05

method result size
derivativedivides \(-\frac {\sqrt {\left (a 2^{x}-b \right ) 2^{-x}}\, 2^{x} \left (-4 a^{\frac {5}{2}} \sqrt {a 2^{2 x}-2^{x} b}\, 2^{x}-4 \ln \left (\frac {2 \sqrt {\left (a 2^{x}-b \right ) 2^{x}}\, \sqrt {a}+2 a 2^{x}-b}{2 \sqrt {a}}\right ) a \,b^{2}+2 a^{\frac {3}{2}} \sqrt {a 2^{2 x}-2^{x} b}\, b -8 a^{\frac {3}{2}} \sqrt {\left (a 2^{x}-b \right ) 2^{x}}\, b +b^{2} \ln \left (\frac {2 \sqrt {a 2^{2 x}-2^{x} b}\, \sqrt {a}+2 a 2^{x}-b}{2 \sqrt {a}}\right ) a \right )}{8 \ln \left (2\right ) \sqrt {\left (a 2^{x}-b \right ) 2^{x}}\, a^{\frac {7}{2}}}\) \(197\)
default \(-\frac {\sqrt {\left (a 2^{x}-b \right ) 2^{-x}}\, 2^{x} \left (-4 a^{\frac {5}{2}} \sqrt {a 2^{2 x}-2^{x} b}\, 2^{x}-4 \ln \left (\frac {2 \sqrt {\left (a 2^{x}-b \right ) 2^{x}}\, \sqrt {a}+2 a 2^{x}-b}{2 \sqrt {a}}\right ) a \,b^{2}+2 a^{\frac {3}{2}} \sqrt {a 2^{2 x}-2^{x} b}\, b -8 a^{\frac {3}{2}} \sqrt {\left (a 2^{x}-b \right ) 2^{x}}\, b +b^{2} \ln \left (\frac {2 \sqrt {a 2^{2 x}-2^{x} b}\, \sqrt {a}+2 a 2^{x}-b}{2 \sqrt {a}}\right ) a \right )}{8 \ln \left (2\right ) \sqrt {\left (a 2^{x}-b \right ) 2^{x}}\, a^{\frac {7}{2}}}\) \(197\)

[In]

int(2^(2*x)/(a-b/(2^x))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/ln(2)*((a*2^x-b)/(2^x))^(1/2)*2^x*(-4*a^(5/2)*(a*(2^x)^2-2^x*b)^(1/2)*2^x-4*ln(1/2*(2*((a*2^x-b)*2^x)^(1/
2)*a^(1/2)+2*a*2^x-b)/a^(1/2))*a*b^2+2*a^(3/2)*(a*(2^x)^2-2^x*b)^(1/2)*b-8*a^(3/2)*((a*2^x-b)*2^x)^(1/2)*b+b^2
*ln(1/2*(2*(a*(2^x)^2-2^x*b)^(1/2)*a^(1/2)+2*a*2^x-b)/a^(1/2))*a)/((a*2^x-b)*2^x)^(1/2)/a^(7/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.81 \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\left [\frac {3 \, \sqrt {a} b^{2} \log \left (-2 \cdot 2^{x} a - 2 \cdot 2^{x} \sqrt {a} \sqrt {\frac {2^{x} a - b}{2^{x}}} + b\right ) + 2 \, {\left (2 \cdot 2^{2 \, x} a^{2} + 3 \cdot 2^{x} a b\right )} \sqrt {\frac {2^{x} a - b}{2^{x}}}}{8 \, a^{3} \log \left (2\right )}, -\frac {3 \, \sqrt {-a} b^{2} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {2^{x} a - b}{2^{x}}}}{a}\right ) - {\left (2 \cdot 2^{2 \, x} a^{2} + 3 \cdot 2^{x} a b\right )} \sqrt {\frac {2^{x} a - b}{2^{x}}}}{4 \, a^{3} \log \left (2\right )}\right ] \]

[In]

integrate(2^(2*x)/(a-b/(2^x))^(1/2),x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(a)*b^2*log(-2*2^x*a - 2*2^x*sqrt(a)*sqrt((2^x*a - b)/2^x) + b) + 2*(2*2^(2*x)*a^2 + 3*2^x*a*b)*sq
rt((2^x*a - b)/2^x))/(a^3*log(2)), -1/4*(3*sqrt(-a)*b^2*arctan(sqrt(-a)*sqrt((2^x*a - b)/2^x)/a) - (2*2^(2*x)*
a^2 + 3*2^x*a*b)*sqrt((2^x*a - b)/2^x))/(a^3*log(2))]

Sympy [F]

\[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\int \frac {2^{2 x}}{\sqrt {a - 2^{- x} b}}\, dx \]

[In]

integrate(2**(2*x)/(a-b/(2**x))**(1/2),x)

[Out]

Integral(2**(2*x)/sqrt(a - b/2**x), x)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.35 \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=-\frac {3 \, b^{2} \log \left (\frac {\sqrt {a - \frac {b}{2^{x}}} - \sqrt {a}}{\sqrt {a - \frac {b}{2^{x}}} + \sqrt {a}}\right )}{8 \, a^{\frac {5}{2}} \log \left (2\right )} - \frac {3 \, {\left (a - \frac {b}{2^{x}}\right )}^{\frac {3}{2}} b^{2} - 5 \, \sqrt {a - \frac {b}{2^{x}}} a b^{2}}{4 \, {\left ({\left (a - \frac {b}{2^{x}}\right )}^{2} a^{2} - 2 \, {\left (a - \frac {b}{2^{x}}\right )} a^{3} + a^{4}\right )} \log \left (2\right )} \]

[In]

integrate(2^(2*x)/(a-b/(2^x))^(1/2),x, algorithm="maxima")

[Out]

-3/8*b^2*log((sqrt(a - b/2^x) - sqrt(a))/(sqrt(a - b/2^x) + sqrt(a)))/(a^(5/2)*log(2)) - 1/4*(3*(a - b/2^x)^(3
/2)*b^2 - 5*sqrt(a - b/2^x)*a*b^2)/(((a - b/2^x)^2*a^2 - 2*(a - b/2^x)*a^3 + a^4)*log(2))

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00 \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\frac {2 \, \sqrt {2^{2 \, x} a - 2^{x} b} {\left (\frac {2 \cdot 2^{x}}{a} + \frac {3 \, b}{a^{2}}\right )} - \frac {3 \, b^{2} \log \left ({\left | 2 \, {\left (2^{x} \sqrt {a} - \sqrt {2^{2 \, x} a - 2^{x} b}\right )} \sqrt {a} - b \right |}\right )}{a^{\frac {5}{2}}} + \frac {3 \, b^{2} \log \left ({\left | b \right |}\right )}{a^{\frac {5}{2}}}}{8 \, \log \left (2\right )} \]

[In]

integrate(2^(2*x)/(a-b/(2^x))^(1/2),x, algorithm="giac")

[Out]

1/8*(2*sqrt(2^(2*x)*a - 2^x*b)*(2*2^x/a + 3*b/a^2) - 3*b^2*log(abs(2*(2^x*sqrt(a) - sqrt(2^(2*x)*a - 2^x*b))*s
qrt(a) - b))/a^(5/2) + 3*b^2*log(abs(b))/a^(5/2))/log(2)

Mupad [F(-1)]

Timed out. \[ \int \frac {2^{2 x}}{\sqrt {a-2^{-x} b}} \, dx=\int \frac {2^{2\,x}}{\sqrt {a-\frac {b}{2^x}}} \,d x \]

[In]

int(2^(2*x)/(a - b/2^x)^(1/2),x)

[Out]

int(2^(2*x)/(a - b/2^x)^(1/2), x)