\(\int x \log (1+e (f^{c (a+b x)})^n) \, dx\) [120]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 63 \[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=-\frac {x \operatorname {PolyLog}\left (2,-e \left (f^{c (a+b x)}\right )^n\right )}{b c n \log (f)}+\frac {\operatorname {PolyLog}\left (3,-e \left (f^{c (a+b x)}\right )^n\right )}{b^2 c^2 n^2 \log ^2(f)} \]

[Out]

-x*polylog(2,-e*(f^(c*(b*x+a)))^n)/b/c/n/ln(f)+polylog(3,-e*(f^(c*(b*x+a)))^n)/b^2/c^2/n^2/ln(f)^2

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2611, 2320, 6724} \[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=\frac {\operatorname {PolyLog}\left (3,-e \left (f^{c (a+b x)}\right )^n\right )}{b^2 c^2 n^2 \log ^2(f)}-\frac {x \operatorname {PolyLog}\left (2,-e \left (f^{c (a+b x)}\right )^n\right )}{b c n \log (f)} \]

[In]

Int[x*Log[1 + e*(f^(c*(a + b*x)))^n],x]

[Out]

-((x*PolyLog[2, -(e*(f^(c*(a + b*x)))^n)])/(b*c*n*Log[f])) + PolyLog[3, -(e*(f^(c*(a + b*x)))^n)]/(b^2*c^2*n^2
*Log[f]^2)

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps \begin{align*} \text {integral}& = -\frac {x \text {Li}_2\left (-e \left (f^{c (a+b x)}\right )^n\right )}{b c n \log (f)}+\frac {\int \text {Li}_2\left (-e \left (f^{c (a+b x)}\right )^n\right ) \, dx}{b c n \log (f)} \\ & = -\frac {x \text {Li}_2\left (-e \left (f^{c (a+b x)}\right )^n\right )}{b c n \log (f)}+\frac {\text {Subst}\left (\int \frac {\text {Li}_2\left (-e x^n\right )}{x} \, dx,x,f^{c (a+b x)}\right )}{b^2 c^2 n \log ^2(f)} \\ & = -\frac {x \text {Li}_2\left (-e \left (f^{c (a+b x)}\right )^n\right )}{b c n \log (f)}+\frac {\text {Li}_3\left (-e \left (f^{c (a+b x)}\right )^n\right )}{b^2 c^2 n^2 \log ^2(f)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00 \[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=-\frac {x \operatorname {PolyLog}\left (2,-e \left (f^{c (a+b x)}\right )^n\right )}{b c n \log (f)}+\frac {\operatorname {PolyLog}\left (3,-e \left (f^{c (a+b x)}\right )^n\right )}{b^2 c^2 n^2 \log ^2(f)} \]

[In]

Integrate[x*Log[1 + e*(f^(c*(a + b*x)))^n],x]

[Out]

-((x*PolyLog[2, -(e*(f^(c*(a + b*x)))^n)])/(b*c*n*Log[f])) + PolyLog[3, -(e*(f^(c*(a + b*x)))^n)]/(b^2*c^2*n^2
*Log[f]^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(261\) vs. \(2(63)=126\).

Time = 0.63 (sec) , antiderivative size = 262, normalized size of antiderivative = 4.16

method result size
risch \(\frac {x^{2} \ln \left (1+e \left (f^{c \left (b x +a \right )}\right )^{n}\right )}{2}-\frac {\ln \left (1+f^{x b c n} f^{-x b c n} \left (f^{c \left (b x +a \right )}\right )^{n} e \right ) x^{2}}{2}-\frac {\operatorname {Li}_{2}\left (-f^{x b c n} f^{-x b c n} \left (f^{c \left (b x +a \right )}\right )^{n} e \right ) \ln \left (f^{c \left (b x +a \right )}\right )}{c^{2} b^{2} \ln \left (f \right )^{2} n}+\frac {\operatorname {Li}_{3}\left (-f^{x b c n} f^{-x b c n} \left (f^{c \left (b x +a \right )}\right )^{n} e \right )}{c^{2} b^{2} \ln \left (f \right )^{2} n^{2}}-\frac {\operatorname {dilog}\left (1+f^{x b c n} f^{-x b c n} \left (f^{c \left (b x +a \right )}\right )^{n} e \right ) x}{c b \ln \left (f \right ) n}+\frac {\operatorname {dilog}\left (1+f^{x b c n} f^{-x b c n} \left (f^{c \left (b x +a \right )}\right )^{n} e \right ) \ln \left (f^{c \left (b x +a \right )}\right )}{c^{2} b^{2} \ln \left (f \right )^{2} n}\) \(262\)

[In]

int(x*ln(1+e*(f^(c*(b*x+a)))^n),x,method=_RETURNVERBOSE)

[Out]

1/2*x^2*ln(1+e*(f^(c*(b*x+a)))^n)-1/2*ln(1+f^(x*b*c*n)*f^(-x*b*c*n)*(f^(c*(b*x+a)))^n*e)*x^2-1/c^2/b^2/ln(f)^2
/n*polylog(2,-f^(x*b*c*n)*f^(-x*b*c*n)*(f^(c*(b*x+a)))^n*e)*ln(f^(c*(b*x+a)))+1/c^2/b^2/ln(f)^2/n^2*polylog(3,
-f^(x*b*c*n)*f^(-x*b*c*n)*(f^(c*(b*x+a)))^n*e)-1/c/b/ln(f)/n*dilog(1+f^(x*b*c*n)*f^(-x*b*c*n)*(f^(c*(b*x+a)))^
n*e)*x+1/c^2/b^2/ln(f)^2/n*dilog(1+f^(x*b*c*n)*f^(-x*b*c*n)*(f^(c*(b*x+a)))^n*e)*ln(f^(c*(b*x+a)))

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.92 \[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=-\frac {b c n x {\rm Li}_2\left (-e f^{b c n x + a c n}\right ) \log \left (f\right ) - {\rm polylog}\left (3, -e f^{b c n x + a c n}\right )}{b^{2} c^{2} n^{2} \log \left (f\right )^{2}} \]

[In]

integrate(x*log(1+e*(f^(c*(b*x+a)))^n),x, algorithm="fricas")

[Out]

-(b*c*n*x*dilog(-e*f^(b*c*n*x + a*c*n))*log(f) - polylog(3, -e*f^(b*c*n*x + a*c*n)))/(b^2*c^2*n^2*log(f)^2)

Sympy [F]

\[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=\int x \log {\left (e \left (f^{a c + b c x}\right )^{n} + 1 \right )}\, dx \]

[In]

integrate(x*ln(1+e*(f**(c*(b*x+a)))**n),x)

[Out]

Integral(x*log(e*(f**(a*c + b*c*x))**n + 1), x)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.86 \[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=\frac {1}{2} \, x^{2} \log \left (e f^{{\left (b x + a\right )} c n} + 1\right ) - \frac {b^{2} c^{2} n^{2} x^{2} \log \left (e f^{b c n x} f^{a c n} + 1\right ) \log \left (f\right )^{2} + 2 \, b c n x {\rm Li}_2\left (-e f^{b c n x} f^{a c n}\right ) \log \left (f\right ) - 2 \, {\rm Li}_{3}(-e f^{b c n x} f^{a c n})}{2 \, b^{2} c^{2} n^{2} \log \left (f\right )^{2}} \]

[In]

integrate(x*log(1+e*(f^(c*(b*x+a)))^n),x, algorithm="maxima")

[Out]

1/2*x^2*log(e*f^((b*x + a)*c*n) + 1) - 1/2*(b^2*c^2*n^2*x^2*log(e*f^(b*c*n*x)*f^(a*c*n) + 1)*log(f)^2 + 2*b*c*
n*x*dilog(-e*f^(b*c*n*x)*f^(a*c*n))*log(f) - 2*polylog(3, -e*f^(b*c*n*x)*f^(a*c*n)))/(b^2*c^2*n^2*log(f)^2)

Giac [F]

\[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=\int { x \log \left (e {\left (f^{{\left (b x + a\right )} c}\right )}^{n} + 1\right ) \,d x } \]

[In]

integrate(x*log(1+e*(f^(c*(b*x+a)))^n),x, algorithm="giac")

[Out]

integrate(x*log(e*(f^((b*x + a)*c))^n + 1), x)

Mupad [F(-1)]

Timed out. \[ \int x \log \left (1+e \left (f^{c (a+b x)}\right )^n\right ) \, dx=\int x\,\ln \left (e\,{\left (f^{c\,\left (a+b\,x\right )}\right )}^n+1\right ) \,d x \]

[In]

int(x*log(e*(f^(c*(a + b*x)))^n + 1),x)

[Out]

int(x*log(e*(f^(c*(a + b*x)))^n + 1), x)