\(\int \frac {d x^m+e \log ^{-1+q}(c x^n)}{x (a x^m+b \log ^q(c x^n))^2} \, dx\) [36]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A]
   Fricas [N/A]
   Sympy [F(-1)]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 40, antiderivative size = 40 \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=-\frac {e}{b n q \left (a x^m+b \log ^q\left (c x^n\right )\right )}+\left (d-\frac {a e m}{b n q}\right ) \text {Int}\left (\frac {x^{-1+m}}{\left (a x^m+b \log ^q\left (c x^n\right )\right )^2},x\right ) \]

[Out]

(d-a*e*m/b/n/q)*CannotIntegrate(x^(-1+m)/(a*x^m+b*ln(c*x^n)^q)^2,x)-e/b/n/q/(a*x^m+b*ln(c*x^n)^q)

Rubi [N/A]

Not integrable

Time = 0.17 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx \]

[In]

Int[(d*x^m + e*Log[c*x^n]^(-1 + q))/(x*(a*x^m + b*Log[c*x^n]^q)^2),x]

[Out]

-(e/(b*n*q*(a*x^m + b*Log[c*x^n]^q))) + (d - (a*e*m)/(b*n*q))*Defer[Int][x^(-1 + m)/(a*x^m + b*Log[c*x^n]^q)^2
, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {e}{b n q \left (a x^m+b \log ^q\left (c x^n\right )\right )}-\left (-d+\frac {a e m}{b n q}\right ) \int \frac {x^{-1+m}}{\left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 20.80 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.05 \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx \]

[In]

Integrate[(d*x^m + e*Log[c*x^n]^(-1 + q))/(x*(a*x^m + b*Log[c*x^n]^q)^2),x]

[Out]

Integrate[(d*x^m + e*Log[c*x^n]^(-1 + q))/(x*(a*x^m + b*Log[c*x^n]^q)^2), x]

Maple [N/A]

Not integrable

Time = 0.08 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00

\[\int \frac {d \,x^{m}+e \ln \left (c \,x^{n}\right )^{-1+q}}{x \left (a \,x^{m}+b \ln \left (c \,x^{n}\right )^{q}\right )^{2}}d x\]

[In]

int((d*x^m+e*ln(c*x^n)^(-1+q))/x/(a*x^m+b*ln(c*x^n)^q)^2,x)

[Out]

int((d*x^m+e*ln(c*x^n)^(-1+q))/x/(a*x^m+b*ln(c*x^n)^q)^2,x)

Fricas [N/A]

Not integrable

Time = 0.35 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.62 \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\int { \frac {d x^{m} + e \log \left (c x^{n}\right )^{q - 1}}{{\left (a x^{m} + b \log \left (c x^{n}\right )^{q}\right )}^{2} x} \,d x } \]

[In]

integrate((d*x^m+e*log(c*x^n)^(-1+q))/x/(a*x^m+b*log(c*x^n)^q)^2,x, algorithm="fricas")

[Out]

integral((d*x^m + e*log(c*x^n)^(q - 1))/(2*a*b*x*x^m*log(c*x^n)^q + a^2*x*x^(2*m) + b^2*x*log(c*x^n)^(2*q)), x
)

Sympy [F(-1)]

Timed out. \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((d*x**m+e*ln(c*x**n)**(-1+q))/x/(a*x**m+b*ln(c*x**n)**q)**2,x)

[Out]

Timed out

Maxima [N/A]

Not integrable

Time = 0.38 (sec) , antiderivative size = 312, normalized size of antiderivative = 7.80 \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\int { \frac {d x^{m} + e \log \left (c x^{n}\right )^{q - 1}}{{\left (a x^{m} + b \log \left (c x^{n}\right )^{q}\right )}^{2} x} \,d x } \]

[In]

integrate((d*x^m+e*log(c*x^n)^(-1+q))/x/(a*x^m+b*log(c*x^n)^q)^2,x, algorithm="maxima")

[Out]

-(b*d*log(c) + b*d*log(x^n) - a*e)/(a^2*b*m*x^m*log(x^n) - (n*q - m*log(c))*a^2*b*x^m + (a*b^2*m*log(x^n) - (n
*q - m*log(c))*a*b^2)*(log(c) + log(x^n))^q) + integrate(-((e*m*n*(q - 1) - e*m^2*log(c))*a + (d*m*n*q*log(c)
- (q^2 - q)*d*n^2)*b + (b*d*m*n*q - a*e*m^2)*log(x^n))/(a^2*b*m^2*x*x^m*log(x^n)^2 - 2*(m*n*q - m^2*log(c))*a^
2*b*x*x^m*log(x^n) + (n^2*q^2 - 2*m*n*q*log(c) + m^2*log(c)^2)*a^2*b*x*x^m + (a*b^2*m^2*x*log(x^n)^2 - 2*(m*n*
q - m^2*log(c))*a*b^2*x*log(x^n) + (n^2*q^2 - 2*m*n*q*log(c) + m^2*log(c)^2)*a*b^2*x)*(log(c) + log(x^n))^q),
x)

Giac [N/A]

Not integrable

Time = 0.43 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.05 \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\int { \frac {d x^{m} + e \log \left (c x^{n}\right )^{q - 1}}{{\left (a x^{m} + b \log \left (c x^{n}\right )^{q}\right )}^{2} x} \,d x } \]

[In]

integrate((d*x^m+e*log(c*x^n)^(-1+q))/x/(a*x^m+b*log(c*x^n)^q)^2,x, algorithm="giac")

[Out]

integrate((d*x^m + e*log(c*x^n)^(q - 1))/((a*x^m + b*log(c*x^n)^q)^2*x), x)

Mupad [N/A]

Not integrable

Time = 2.10 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.05 \[ \int \frac {d x^m+e \log ^{-1+q}\left (c x^n\right )}{x \left (a x^m+b \log ^q\left (c x^n\right )\right )^2} \, dx=\int \frac {d\,x^m+e\,{\ln \left (c\,x^n\right )}^{q-1}}{x\,{\left (a\,x^m+b\,{\ln \left (c\,x^n\right )}^q\right )}^2} \,d x \]

[In]

int((d*x^m + e*log(c*x^n)^(q - 1))/(x*(a*x^m + b*log(c*x^n)^q)^2),x)

[Out]

int((d*x^m + e*log(c*x^n)^(q - 1))/(x*(a*x^m + b*log(c*x^n)^q)^2), x)