Integrand size = 21, antiderivative size = 62 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=-\frac {(a-b)^2 \log (\cos (e+f x))}{f}+\frac {(a-b) b \tan ^2(e+f x)}{2 f}+\frac {\left (a+b \tan ^2(e+f x)\right )^2}{4 f} \]
[Out]
Time = 0.07 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3751, 455, 45} \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {b (a-b) \tan ^2(e+f x)}{2 f}+\frac {\left (a+b \tan ^2(e+f x)\right )^2}{4 f}-\frac {(a-b)^2 \log (\cos (e+f x))}{f} \]
[In]
[Out]
Rule 45
Rule 455
Rule 3751
Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x \left (a+b x^2\right )^2}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \frac {(a+b x)^2}{1+x} \, dx,x,\tan ^2(e+f x)\right )}{2 f} \\ & = \frac {\text {Subst}\left (\int \left ((a-b) b+\frac {(a-b)^2}{1+x}+b (a+b x)\right ) \, dx,x,\tan ^2(e+f x)\right )}{2 f} \\ & = -\frac {(a-b)^2 \log (\cos (e+f x))}{f}+\frac {(a-b) b \tan ^2(e+f x)}{2 f}+\frac {\left (a+b \tan ^2(e+f x)\right )^2}{4 f} \\ \end{align*}
Time = 0.25 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.87 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {-4 (a-b)^2 \log (\cos (e+f x))+2 (2 a-b) b \tan ^2(e+f x)+b^2 \tan ^4(e+f x)}{4 f} \]
[In]
[Out]
Time = 0.05 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.06
| method | result | size |
| norman | \(\frac {b^{2} \tan \left (f x +e \right )^{4}}{4 f}+\frac {b \left (2 a -b \right ) \tan \left (f x +e \right )^{2}}{2 f}+\frac {\left (a^{2}-2 a b +b^{2}\right ) \ln \left (1+\tan \left (f x +e \right )^{2}\right )}{2 f}\) | \(66\) |
| derivativedivides | \(\frac {\frac {b^{2} \tan \left (f x +e \right )^{4}}{4}+\tan \left (f x +e \right )^{2} a b -\frac {b^{2} \tan \left (f x +e \right )^{2}}{2}+\frac {\left (a^{2}-2 a b +b^{2}\right ) \ln \left (1+\tan \left (f x +e \right )^{2}\right )}{2}}{f}\) | \(67\) |
| default | \(\frac {\frac {b^{2} \tan \left (f x +e \right )^{4}}{4}+\tan \left (f x +e \right )^{2} a b -\frac {b^{2} \tan \left (f x +e \right )^{2}}{2}+\frac {\left (a^{2}-2 a b +b^{2}\right ) \ln \left (1+\tan \left (f x +e \right )^{2}\right )}{2}}{f}\) | \(67\) |
| parallelrisch | \(\frac {b^{2} \tan \left (f x +e \right )^{4}+4 \tan \left (f x +e \right )^{2} a b -2 b^{2} \tan \left (f x +e \right )^{2}+2 \ln \left (1+\tan \left (f x +e \right )^{2}\right ) a^{2}-4 \ln \left (1+\tan \left (f x +e \right )^{2}\right ) a b +2 \ln \left (1+\tan \left (f x +e \right )^{2}\right ) b^{2}}{4 f}\) | \(91\) |
| parts | \(\frac {a^{2} \ln \left (1+\tan \left (f x +e \right )^{2}\right )}{2 f}+\frac {b^{2} \left (\frac {\tan \left (f x +e \right )^{4}}{4}-\frac {\tan \left (f x +e \right )^{2}}{2}+\frac {\ln \left (1+\tan \left (f x +e \right )^{2}\right )}{2}\right )}{f}+\frac {a b \tan \left (f x +e \right )^{2}}{f}-\frac {a b \ln \left (1+\tan \left (f x +e \right )^{2}\right )}{f}\) | \(94\) |
| risch | \(i a^{2} x -2 i a b x +i b^{2} x +\frac {2 i a^{2} e}{f}-\frac {4 i a b e}{f}+\frac {2 i b^{2} e}{f}+\frac {4 b \left (a \,{\mathrm e}^{6 i \left (f x +e \right )}-b \,{\mathrm e}^{6 i \left (f x +e \right )}+2 a \,{\mathrm e}^{4 i \left (f x +e \right )}-b \,{\mathrm e}^{4 i \left (f x +e \right )}+a \,{\mathrm e}^{2 i \left (f x +e \right )}-b \,{\mathrm e}^{2 i \left (f x +e \right )}\right )}{f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{4}}-\frac {\ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) a^{2}}{f}+\frac {2 \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) a b}{f}-\frac {\ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) b^{2}}{f}\) | \(200\) |
[In]
[Out]
none
Time = 0.27 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.03 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {b^{2} \tan \left (f x + e\right )^{4} + 2 \, {\left (2 \, a b - b^{2}\right )} \tan \left (f x + e\right )^{2} - 2 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \log \left (\frac {1}{\tan \left (f x + e\right )^{2} + 1}\right )}{4 \, f} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 112 vs. \(2 (49) = 98\).
Time = 0.13 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.81 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\begin {cases} \frac {a^{2} \log {\left (\tan ^{2}{\left (e + f x \right )} + 1 \right )}}{2 f} - \frac {a b \log {\left (\tan ^{2}{\left (e + f x \right )} + 1 \right )}}{f} + \frac {a b \tan ^{2}{\left (e + f x \right )}}{f} + \frac {b^{2} \log {\left (\tan ^{2}{\left (e + f x \right )} + 1 \right )}}{2 f} + \frac {b^{2} \tan ^{4}{\left (e + f x \right )}}{4 f} - \frac {b^{2} \tan ^{2}{\left (e + f x \right )}}{2 f} & \text {for}\: f \neq 0 \\x \left (a + b \tan ^{2}{\left (e \right )}\right )^{2} \tan {\left (e \right )} & \text {otherwise} \end {cases} \]
[In]
[Out]
none
Time = 0.23 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.32 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=-\frac {2 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \log \left (\sin \left (f x + e\right )^{2} - 1\right ) + \frac {4 \, {\left (a b - b^{2}\right )} \sin \left (f x + e\right )^{2} - 4 \, a b + 3 \, b^{2}}{\sin \left (f x + e\right )^{4} - 2 \, \sin \left (f x + e\right )^{2} + 1}}{4 \, f} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 1250 vs. \(2 (58) = 116\).
Time = 1.62 (sec) , antiderivative size = 1250, normalized size of antiderivative = 20.16 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\text {Too large to display} \]
[In]
[Out]
Time = 11.26 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.10 \[ \int \tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {\ln \left ({\mathrm {tan}\left (e+f\,x\right )}^2+1\right )\,\left (\frac {a^2}{2}-a\,b+\frac {b^2}{2}\right )}{f}+\frac {{\mathrm {tan}\left (e+f\,x\right )}^2\,\left (a\,b-\frac {b^2}{2}\right )}{f}+\frac {b^2\,{\mathrm {tan}\left (e+f\,x\right )}^4}{4\,f} \]
[In]
[Out]